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PREFACE

Four years and five months have passed since I started this

period, so many things were designed and accomplished. Even if I

am the principal investigator, I find it practically impossible to

include and systematize all the important findings and implications

within a single final report. I did my best within a limited amount

of time, however. It is obvious that the present report should be

supplemented and revised further. I plan to do so and use the
result at the Advanced Seminar on Latent Trait Theory, which will
be held in spring, 1982, in the vicinity of Knoxville, Tennessee,

under the sponsorship of the Office of Naval Research.

There were four objectives in the original research proposal,

and they can be summarized as follows.

[1] Investigation of theory and method for estimating the

operating characteristics of discrete item responses,

without assuming any specific mathematical forms, and

without using too many examinees in the whole procedure.

[2) Investigation of the speed factor working in combination i
with the power factor in intellectual performance.

[3] Investigation of the random guessing behavior in testing,

and the development of a new model, or new models, for

the multiple-choice item.

[4] Investigation of efficient methods of estimating the ability

distribution f~r an specific group of examinees.

Out of these four objectives, Objective [1], together with Objective

[4], was very intensively pursued. The highest productivity belongs

to this part of the research. Objective [3] was also successfully
A pursued. It provided us with valuable future perspectives and
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directions of research. In contrast to these three, Objective [2)

was more or less dropped. To compensate for it, however, there were

several other topics pursued, such as a new mathematical model for

the binary item called Constant Information Model, the method of

moments as the least squares solution for fitting a polynomial,

Bayesian estimation of ability, and alternative estimators for the

maximum likelihood estimator for the two extreme response patterns.

All of these additional topics are related to the proposed

objectives, but they also have the values of their own.

Recently, some researchers have started using the title,

Item Response Theory, instead of Latent Trait Theory, the former

of which, I believe, was first proposed by Dr. Frederic M. Lord.

Although I have a great deal of respect for Dr. Lord for his long,

brilliant career as a researcher and scholar, I prefer Latent Trait

Theory. One of the reasons for my preferen" is that I see no

reason why it should be changed, after so many years of presentations

and publications of papers under the title of Latent Trait Theory,
which include my own paper presented at the Fifth International

Symposium on Multivariate Analysis, and ptblished in Multivariate

Analysis V (Krishnaiah, Ed., 1978) as a chapter. I feel that the

change of the title would cause more confusion than anything else,

not only among psychologists but also among mathematicians and

mathematical statisticians who have become familiar with the Theory.

Secondly, the term, Item Response Theory, has been used mainly by

researchers whose interest is in the three-parameter logistic model

in the uni-dimensional latent space. For the type of research such

as mine, which covers broader areas and even includes the multi-

dimensional latent space, Latent Trait Theory sounds more appropriate.4

In the present report, therefore, Latent Trait Theory is exclusively

used for the general title, instead of Item Response Theory.

September 30, 1981

"Author

7I 7

_ ________
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I General Background

Latent Trait Theory can be traced back to the nineteen-forties, in

the work of Lawley (Lawley, 1943) and others. In the nineteen-fifties,

psychometricians like Tucker and Lord developed the basic theory as a

mental test theory, and, among others, Lord integrated and published it

in a Psychometric Monograph (Lord, 1952). These early works by

ps)(,-metricians were Joined by the latent structure analysis, which had

beea developed by Lazarsfeld (Lazarsfeld, 1959) and others as a theory

of social attitude measurement in the area of sociology, and also by the

work accomplished by Rasch (Rasch, 1960) in the context of mental

measurement. These pioneer works led us to a comprehensive system of.'-,

the Latent Trait Theory.

The modern mental test theory thus established originally adopted

the normal ogive model for the conditional probability of the correct

answer, givun ability, or the item characteristic function, of the

dichotomously scored test item. In the nineteen-sixties, Birnbaum (Birnbaum,

1968) proposed the logistic model, which is an approximation to the

normal ogive model with its benefit of mathematical simplicities caused

by a simple sufficient statistic for the vector of binary item scores,

or the response pattern. Birnbaum also proposed the three-parameter

logistic model for the multiple-choice test item, which is a modification

of the logistic model and is based upon the knowledge or random guessing

principle. Samejima (Samejima, 1969) expanded the theory to include

both the nominal and graded response levels, in addition to the

"dichotomous response level. The graded response level assumes integers.

0 through m (Q 1) , for the item score, and is further classified
g

into two cases, the homogeneous case and the heterogeneous case

(Samejima, 1972). With this generalization, we needed more than a single

item characteristic function for a test item, and the conditional

probability, given ability, or the operating characteristic, of each of

the discrete responses to an item was introduced. Both the normal ogive

model and the logistic model were expanded for the homogeneous case of

the graded response level, which provide us with ordered, unimodal

operating characteristics for all the intermediate response categories.

...... .
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Sufficient conditions for a model to have a unique maximum of the

opera^.ing characteristic of each and every response pattern were

investigated and postulated. Bock (Bock, 1972) proposed a multinomial

response model, which can either be interpreted as a model on the nominal

response level or as a model in the heterogeneous case of the graded

response level. Samejima (Samejima, 1973) also proposed several models

on the continuous response level, defining the operating density

characteristic for each continuous item response, and, later (Samejima,

1974), she expanded it to the multi-dimensional latent space.

In contrast to the development of the theory, its applications
are still far behind. For one thing, the theory has not been well
understood and used by most applied researchers. Many psychologists

still bury themselves in the tautology of the classical mental test

theory, although it has been pointed out (Samejima, 1977) that such core

concepts in classical test theory as the reliability coefficient and the

validity coefficient of a test are highly irrelevant and misleading, and

that the information functions in Latent Trait Theory provide us with a
far more relevant set of information.

In the past decade, Rasch model has become increasingly popular

among certain applied researchers. The development of adaptive testing,

or tailored testing, has also made the three-parameter logistic model

popular among researchers of mental measurement. The gradual j
popularities of these two models do not always depend upon the relevance

of these models, however. Researchers tend to choose one of those

models fairly arbitrarily, and because of its availability and easiness ''1

in handling rather than their scientific convictions. The worst of all, -i

very little effort has been put upon the model validation, which is

essential in any scientific research.

T'-- -rientation we aim at in the present study is quite different
from the general trends described in the preceding paragraph. We

consider ourselves slaves to the truth, rather than masters who can

choose their models as they wish and for their own convenience. This

orientation leads us to the emphasis upon the elimination of as many

H, .

_:,>r- --•- - . - .,- -
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* .assumptions as possible, and upon the model validation whenever we use
one. The author hopes that the present study will stimulate some of t'ie

researchers following general trends to the extent that they wish to chang.

their ways, following harder paths to reach the productivity of truly

scientific ,ense.
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11 Research Reports .

There are nineteen technical reports published during the contract

period. All of them, exccept for three, were written by the principal

investigator. The three technical reports, RR-79-2, RR-80-1 and

RR-8l-3, were written under the coauthorship of the principal
investigator, and Philip Livingston, Robert Tresiman and Paul

Changas, respectively. There is one Scientific Monograph published

by the Tokyo Office of the Office of Naval Research in 1980. There

are two papers in the proceedings of the Computerized Adaptive Testing

Conference, in 1977 and in 1979, respectively. The titles of these

twenty-two research reports are listed on the following pages.)

In addition to them, during the contract period, the principal

investigator introduced some of the products and findings of the present

research in an invited paper at the Fifth International Symposium on
Multivariate Analysis, which was held at the University of Pittsburgh,

in 1978. The title of the paper is Latent Trait Thor and Its

Applications, and was published in Multivariate Analysis V (Krishnaiah,

Ed.; North-Holland, 1980).

The twenty-two research reports can roughly be categorized into

seven groups, and, in the list, they are marked with different symbols

accordingly. There are eleven papers which are marked with ýA . All of

them concern with the estimation of the operating characteristics of K
discrete item responses, and the estimation of the ability distribution.

rp he method of moments as the least squares solution for fitting aI

polynomial is discussed in one paper, which is marked with B . There

are two papers marked with Y1~ , and they are concerning the new family

of models for the multiple-choice test item. There is one paper with

the mark co, which is an empirical study concerning the multiple-choice

test item, and is related with the previous two. There are thrie papers

on the Constant Information Model, which in a new model proposed by the

principal investigator, and these papers are marked with 0 in the list.

There are two papers on the computerized adaptive testing, and they are



-7- 11-2
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concerning Bayesian vs. the maximum likelihood estimation of ability, -:

which is marked with ¶ I

The contents and the main findings of these papers will be -.

integrated and summarized in the following chapters. The reader will

also find out how these seemingly separate topics are reiated, and

how we can use them together to accomplish useful tesearch.

.77==

if" • • l[I

• •.,.• .•, ,•, ," :• " ,•',°L C . ... .. , .. ... . . ", !



-9-. l-

III Estimation of the Operating Characteristics of the Discrete Item
Responses and That of Ability Distributions: I

As we have seen in the preceding chapter, there are eleven papers

written on these two subjects, and one paper on the method of moments

which takes an important role in the methods and approaches for these

estimations. In the present chapter, we shall start integrating the

rationale, data and methods of this part of the research, and organize

them into several sections.

(III.1) Relationship between the Estimation of the Operating

Characteristics and that of Ability Distributions

By discrete item responses we mean any discrete answer to the

item, including both free responses and multiple-choice responses. When

free responses are treated as they are, or more or less categorized
depending upon their mutual similarities, they provide us with nominal

responses. If we use a dichotomous scoring stategy by categorizing them

into two categories, i.e., "correct" and "incorrect", then they will be

treated as dichotomous responses. If we adopt a more graded scoring
"strategy by categorizing them into more than two categories, i.e., 0

through m for item & , depending upon their closeness to the correct
g

answer, then they will be treated as graded responses. In each case, we

have discrete item responses.

Let 8 be ability, or latent trait, which assumes any real number.

Let f(e) be the *:nsity function of ability 8 for a given group of
examinees. We denote the set of all the discrete responses to item g by

K , and its element by k or h • Then the density function, f(8) ,

can be written ae

(3.1) f(6) E f (0) p(k
,k kEK g ,,•. ~ g

where fk (6) is the density function of ability e for the subgroup
g

of examinees whose responses to item g are uniformly k , and p(kg)
g g

is the probability assigned to the subgroup within the total group of

examinees. We can write for the operating characteristic, Pk (8) , of'Ik

S • .. . . ..... .. ....
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the discrete item response k such that
g

(3.2) PCk (0) f k (0) p(k ) [ E fh (8) p(hg] .
g g hCK g

g g

Equation (3.2) indicates that the estimated operatinmg characteristic

of a discrete item response k can be obtained by the ratio of itsgI
estimated absolute frequency of ability to the absolute frequency for the

whole set, K . Throughout the present study, this ratio is theg
- ,I estimated operating characteristic we adopt. Any method for estimating

the operating characteristics of discrete item responses includes,

therefore, the estimation of two or more ability distributions. In other

words, those methods and approaches developed in the present study are

not only for the estimation of the operating characteristics but also for
the estimation of ability distributions. >1

There is a certain invariance property in the estimated operating

characteristic over the transformation of the latent trait, which is not

shared by the estimated probability density of ability. Let T bt a

strictly increasing and differentiable function of 0 . We have for the

densities, f*(T) and f* (T) , for the transformed latent trait T ,

such that g

(3.3) f*(T) - f(e) •-
dT

': .1 and

ded

(3.4) f* (T) T f (e)kB k
g g

for any discrete response k E K . From (3.2) and (3.4) it is obvious
g g

that for the operating characteristic, P* (T) , we haveg

(3.5) P t ()),

which indicates the invariance of the estimated operating characteristic
over the transformation of the latent trait.

,*1., Ii
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(111.2) No Mathematical Forms Are Assumed for the Operating
Characteristics of the Unknown Test Items

Most researchers preassume some mathematical model for the

operating characteristics of the item responses of their unknown

test items. In such a case, the estimation of the operating

characteristics is converted to the estimation of a small number ofI

item parameters. This simplification will make it easy for us to

conduct our research. On the other hand, in so doing, we may

distort the psychological reality, which is the very object of our

research, by molding it into some irrelevant model. Thus both theI

deductive and inductive validations of the model are by far the most

important when we adopt any mathematical model. In other words, the

model must follow a rationale which also explains the psychological

reality behind our data, and, once they were analyzed, we must

validate the model by finding out if the internal consistency exists.

The importance of the model validation seems to be forgotten
by many researchers, however. To give an example, the popularity of

Rasch model mainly depends upon its mathematical simplicity, which

comes frow the fact that it has onyone paaeei.e., the

difficulty. Very few researchers stop to think, however, whether
this particular model and its simplicity are appropriate for their

data, nor do they try to find out the validity of the model by

checking the internal consistency in their results. Another example

is the way many researchers use the three-parameter logistic model

for their data of multiple-choice test items. The raltionale behindI ~the model is the knowledge or~ random guessing principle, which is

rather unlikely to be the case in most multiple-choice testing

situations. Among others, the fact that they are ready to accept a
value which is less than the reciprocal of the number of the

alternatives of a specified multiple-choice test item as the third

parameter, i.e., the guessing parameter, is nothing but defeating

itself.

To avoid the possibility of adopting an irrelevant mathematical

model, the best solution will be to develop methods of estimating the
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operating characteristics of the discrete item responses without

assuming any mathematical forms. In the present study, this direct

approach to the operating characteristics is consistently used.

Although it creates more difficulty and requires more labors in

developing our methods and approaches, it is worth our effort

considering the due cause we have. The reader will find similar

attempts in the works by Lord (Lord, 1970) and Levine (Levine,

1980), i.e., estimation of the operating characteristics without
1< assuming any mathematical forms.

(111.3) Small Numbei. of Examinees in the Calibration Data

For a relatively few researchers whose calibration data are

obtained from institutes like Educational Testing Service, it is easy

to use those which were collected upon several hundred thousand

examinees. For most researchers who do their research in university

environments, however, the situation is quite different. It may beexrmlIifcl o hmt fn vnoetosn oute
students for their subjects. For this reason, it is necessary that
we should investigate aad develop methods of estimating the operating
characteristics which do not require more than several hundred

examinees for our calibration data.

This is one of the important considerations in the present
study. Our calibration data are based upon five hundred hypothetical

examineest whose ability levels are at one hundred equally spaced

positions on the ability dimension, with five examinees being placed

at each position. This configuration can be considered as an

opproximation to a uniform distribution of ability. To be specific,

the five hundred ability levels range from -2.475 to 2.475 , with

the equal steps of 0.05 . The uniform distribution has, therefore,

the density of 0.2 , for the interval of ability e (-2.5, 2.5)

as is shown in Figure 3-3-1.

.~ (If
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iI.,

OA
•' 0.2

0.0-40 4.0 -20 - 0 1.0 2.0 3.0 4.0
LATENT TRAIT B

FIGURE 3-3-1

Ability Distribution of our 1ppotbatical useainea.
Actually, the Vivo Numdred Eamsinses Are Placed at

the One Hundred Zqually Spaced Positions from
-2.475 to 2.475 , with Five Eaamiease

,harlas tach Position.

(111.4) Old Test

It is assumed that there exists a set of test items whose

operating characteristics are known, and our examinees have taken

the test, as well as a set of test items whose operating

characteristics are to be estimated. We call the first set of test

items Old Test, and the estimation of the operating characteristics
of the test items of the second sew is based upon the examinees'

performances on the Old Test.

The methods and approaches developed on this assumption are

directly useful in such a situation that, in adaptive testing, we

have a well-constructed item pool, but we want to add more test items

to our item pool. Another suitable situation will be that we have a
relatively small number of well developed test items which have a

high content validity for our purpose of measurement, and on the

trial-and-error basis we have obtained confirmed mathe aUt*al model

or models for separate test items with respect to their deductive

and inductive validities, so that we shall be able to use them as our

Old Test.

VJ -. -
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This assumption of the existence of the Old Test is a

restriction, which we may wish to eliminate so that we shall be able

to expand the applicability of our methods and approaches to the

situation where we must start the calibration of the operating

characteristics from scratch. There are two different attempts for

this purpose, which will be discussed in a later chapter.

In the present study, a set of thirty-five test items has been

chosen as our original Old Test. Each of these thirty-five items has

three graded item score categories, and follows the normal ogive

model such that

ag(0-bxg

(3.6) P (0) [270-1/2 ( 0 e-u / 2 du/ag9e-x +1)
gg

where x (=0,l,...,mg) is the graded item score of item g
9 t

P (0) is its operating characteristic, a (> 0) is the itemx gg
d1icrimination parameter, and b is the item response difficulty

x
parameter which satisfies

(3.7) - 0 = b0 < b1 < ... < bm < +1,m =
8 9

The item parameters and item response parameters of these thirty-

five test items are shown in Table 3-4-1 . We have also used nine

different subtests of the original Old Test as our Old Test on
different occasions, and these subtests are shown in the same table

by indicating the test items by crosses. The numbers of test items

in these subtests range from five to twenty-five.
We can write for the item respouse information function,

1 (6) , such that

(3.8) 1x (0) 70S log Px (0)

and the item information function, I (6) , is given as the conditional

9U

'S

[I
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;r TABLE 3-4-1 I
• ti Parameters of the Test Itms of Our o1d Tests.

Subtrists
1 -4.75 3. 2 1 2 3 4 15 6 7" 8 9

1 6 1 '8 " 7 5 :3 "7 5 11
2 1.9 -4.50 -3.50
3 2.0 -4.25 -3.25 x
4 1.5 -4.00 -3.00 x X
5 1.6 -3 75 -2.75 x
6 1.4 -3.50 -2.50 s x x x X X
7 1.9 -3.00 -2.00 x x X
a 1.8 -3.00 -2.00 X x X z X
9 1.6 -2.75 -1.75 X Xz

10 2.0 -2.50 -1.50 X X X X
11 1.5 -2.25 -1.25 X x X X X

12 1.7 -2.00 -1.00 X X x X x X
13 1.5 -1.75 -0.75 X X X
14 1.4 -1.50 -0.50 1 X X X
15 2.0 -1.25 -0.25 • X X
16 1.6 -1.00 0.00 K X X
17 1.8 -0.75 0.25 X Xis 1 . 7 -0.50 0.50 X X X X X , X

19 1.9 -0.25 0.75 X X
20 1.7 0.00 1.00 X X K

421 1.5 0.25 1.25 K •
V 22 1.8 0.50 1.50 X K X K

23 1.4 0.75 1.75 z x x K X
24 1.9 1.00 2.00 x X K I K I
25 2.0 1.25 2.25
26 1.6 1.50 2.50 X • K K KI 27 1.7 1,75 2.75 X • • X
28 1.4 2.00 3.00 X K • K K

29 1.9 2.25 3.25 X •
30 1,6 2,50 3.50 X X • • X K

31 1.5 2.75 3.75 K

32 1.7 3.00 4.00 • I

33 1.8 3.25 4.25 X K K

34 2.0 3.50 4.50 X X
35 1.4 3.75 4.75 X

expectation of the item response information function, i.e.,
dm

S(3.9) 1 (0) - g I (e) Px (6)
Sxg X x,8 X = g g

The response pattern of the set of n test items is the set of the
n item scores such that

-
I,

(3.10) V- ( ... x -'

4By virtue of the local independence (Lord and Novick, 1968, CapterS~16), the operating cnaracteristic of the response pattern V is

:: T" given as the product of the n operating characteristics nf the
S~item scores, so that we have
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(3.11) Pv(6) - x px (8)
xEV g

g
We can write for the response pattern information function, IV()

such that

(3.12) I1(e) -Tlog Pv(e) = E 1 (e)SxSV V

and the test information function, '1() ,is the conditional

expectation of the response pattern information functions. We

obtain

n n, (3.13) 1(6) - Y ve) Pv(e) . =- Ee I
V g1l 9

The square root of the test information function of the Old Test

has an important role in the present study, which will be described

in later sections. For the original Old Test, this function of e
is approximately constant (- 4.65) for the interval of 8 of our

interest, i.e., approximately, (-3.0, 3.0) . For the nine subtests

of the original Old Test, this function is not constant, but is

either a unimodal or a bimodal function of e . The square root of

the test information function for each of the ten Old Tests which

were used in the present study is shown in Figure 3-4-1.

~L ( :ubteet number t 1 S ubtest Number-

100

"44WO 44)

.. t t. (

(3)

.&0 -10 -20 -W GO W 2.0 &0 4) 40 40 -W GO t0 130 00
LATWfT TPAlT 6 IA1W TPAW S

FIGURE 3-4-1

Square Root of the Test luformitloU PaCtion of Zsch of Subtests I
through 9 , Together with the One for the Original Old Teat (04.65).

%.,
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(111.5) Set of Five Hundred Maximum Likelihood Estimates

4 The maximum likelihood estimate of the examinee's ability

when each of the n items follows the normal ogive model can be

obtained numerically (Samejima, 1969, 1972), by using the operating

characteristic P (8) as the likelihood function. Let A (6) be
V 'C

the basic function of item score x ,which is defined by
8

(3.14) A (0) - log P (8)
x ae x

9 g

We can write for the maximum likelihood estimate § for the response

pattern V such that

(3.15) E Ax ( - 0.
xg EV V

if[ In the normal ogive model, this basic function is a strictly
decreasing function of e , and the two asymptotes of the basic

function are 0 and -- for the lowest extreme response pattern

(0,0,...,0) , ' and 0 for the highest extreme response pat',e.

F (mlim ,...,m) , and -- and - for all the other intermediate
12 n

response patterns.

In our study, by the Monte Carlo method, we calibrated, for

each hypothetical examinee, the response pattern of the n test

items of the Old Test, and based upon this response pattern the

maximum likelihood estimate of his abilitywas obtained. This set

of five hundred maximum likelihood estimates takes an essential

* role in the calibration of the operating characteristics of each of

our unknown test items.

The maximum likelihood estimate has such an asyptotic

property that the estimate is conditionally unbiased and normally

-* ]distributed with 8 and [I(6)]-I 2  as its two parameters, given

6 . It has been observed (Samejima, 1975, 1977a, 1977b) that this

asymptotic normal distribution can be used as a good approximation

ALa

* J . ;b .'-.L .: . _ • . -, • •'u .. .•. •.,.

S-v~ -- .It.
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to the conditional distribution of V, given 0 , even when the

number of test items is not so large and the amount of test

information is relatively small. Throughout the present study,

this approximation is effectively used.

(111.6) Unknown Test Items Whose Operating Characteristics Are to
Be Estimated

There are ten hypothetical, binary test items, and throughout

the present study, our target is the estimation of the operating

characteristic of x = 1 , or the item characteristic function,g

for each of these ten binary items. Let Ph(e) be the item

characteristic function of the unknown test item h . For each

item, this item characteristic function follows the normal ogive

model, such that

fa (9-b)2
(3.16) ph(e) h [211-I/2ah -bh e-u2/2 du

The discrimination parameter ah and the difficulty parameter bh h

are shown in Table 3-6-1 for each of these ten binary test items.

TABLE 3-6-1

Ite- Viscriinatiuon Parmeter a.

and Item Difficulty Parameter bh

of Each of Ten Binary Items

Item h ah bh

1 1.5 -2.5
2 1.0 -2.0
3 2.5 -1.5
4 1.0 -1.0
5 1.5 -0.5
6 1.0 0.0
7 2.0 0.5
8 1.0 1.0
9 2.0 1.5

10 1.0 2.0

_ _ ,

___ p
V -

i " '•
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There is no doubt for the necessity of using more varieties

of nperatiug characteristics for the unknown test items, including

unimodal functions, functions with non-zero asymptotes, and so on.

Because of the amount of work done in the present study, however,

[ this has to wait for future tesearch. The author hopes that some

other researchers will get interested in conducting such research,

using the methods and approaches developed in the present study.

(111.7) Use of Robust, Indirect Information

Lord adopted his own method (Lord, 1969) of estimating true

score distributions from the observed score distributions in his

attempt (Lord, 1970) of estimating the item characteristic functionsiI
of the SAT Verbal Test items without preassuming any mathematical

forms. He excluded the item under study from the total test in

defining the test score. This direct approach to the operatin•,

characteristics does not require Old Test, and we can start from
the direct observation cf the sample test score distributions. The

nuuber of examinees Lord used in his calibration of the item

characteristic functions is 103,275 . This valuable study by Lord

provides us with a methodology which we can use for empirical data

which are found in large institutes like Educational Testing Service.

There is no question that a large sample size is desirable

in the estimation of the operating characteristics. There is a

necessity, however, that we should develop methodologies which are

applicable for much smaller groups of examinees. Levine (Levine,

1980) developed a method with this consideration in mind. Following

the present study by the author, he used Old Test as the basis of

calibrating the operating characteristics of unknown test items.

In his method, Levine introduced a set of orthonormal eigenfunctions,

the number of which does not exceed the nnmber of all possible
response patterns of the Old Test. In practice, this number is much

less than this maximal value, and it is interesting to note that it

depends not only upon the number of test items in the Old Test but

also upon the number of examinees. In other words, Levine's method

S~I
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involves a certain trade-off relationship between the number of

examinees and that of test items in the Old Test. He has tried his

own method using the author's simulated data based upon the original

Old Test (cf. Section 111.4) and the five hundred hypothetical

l: examinees (cf. Section 111.3), and his results turned out to be

successful. He also tried his method using SAT test items (Levine,
1981), using somewhat larger numbers of examinees, like one

thousand.

In using a small number of examinees as the basis of the

calibration of operating characteristics, we need some additional
i information other than the one which is directly obsexvable, such
as the observed test score distribution, the response pattern, and

so on. Such indirect information must be robust to the fluctuation

caused by a small sample size. In the present study, the conditonal

moments of e , given its maximum likelihood estimate e , serves

for the purpose. In other words, instead of approaching the:1 ability distribution directly as is the case with Lord's method and

Levine's method, we focus our attention to the conditional

distribution of 7ýbility 8 , given its maximum likelihood estimate
AAe , or the bivariate distribution of 0 and 0 . Thus the estimated j

unconditional ability distribution is obtained as an aggregate of

the estimated conditional density function of 8 , given 6., or in

the form of integration of the estimated bivariate density function

of 0 and 0.

Let us assume that the square root of the test information

function of our Old Test is constant for the interval of 6 of our

interest, as is the case with our original Old Test. We shall

denote tha conditional density of 0 , given ability 0 , by

ip(8je) . By virtue of the asympototic normality of the conditional
distribution of 0 , given 0 , 4(68) is approximated by the
normal density function, with e and [imrl"I/ as its parameters.•

Let a denote the constant value of [10 2 The firet

through fourth derivatives of p(6jO) with respect to 0 can be

written as follows.

• .. :J
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(3.17) e •3•

a4'

Let g(3 ) be the density function of the maximum likelihood estimate

6 . We can write

(3.21) g(O) - f 61O)f(e) dO

Let us assume that this density function, g(e) , is four times( differentiable. We obtaii& for the conditional expe-tation of 6

given 0 and the second, third and fourth conditional moments of

0 about the mean, given 0 ,

(3.22) E(6Ie) +02 d log g(+ 6 + 02[_ 6

+" , d2

*,1, ' (3.23) Var.(16l) 02[1 + 02 log g(})]

, I" •: - 02(1 + y2{ d2 g( 6 d~g(6 )

(3.24) E[{d-E(elo)} 31e] - 3log g(6).

and

(3.25) ([{O-E(eI•)} 6 o 13 + 60{ .W log g(g)}
4(, d2 4{ d

+ 3{.-•-' d ogg( )1 +r{ 7d4 log g( 6)}]

,Ir."
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We can see from the above four formulas that these conditional

moments are specified exclusively by , g(O) and a . Note,

moreover, that if the density function, g(6) , is estimated, then

vi these conditional moments are obtainable for any value of 6 within
its meaningful interval. The first through fourth derivatives of

log g(e) can be written as follows.

di •d 1-
S(3.26) "A log g(6) - 7g(§) [g(d)

(3.27) d--log g(q) - [g(6)2d-- (g) -2d g)}2][g(6)] "

dl ld &6 d3 d d2
(3.28) d_ 31 o g(•) [{g(()}2. -d.g(6) - 3g(6)- d g(6)" Mg(O)

+ 2{ d gC6)}31[g(6)]3.

(3.29) d-log g(6) [{g(6)}3. d g(@) 3

- 4{(g)}2. d g().)

3{g(6)1 2 { d-g2( 53)2

4i + 12g( ) g(d)} 2, d' g.

d 2

iiI. We notice that, since 0 is obtained as the reciprocal of

the square root of the test information function of the Old Test,

all we need is to estimate the density function g(o) from the set

the consideration of making the resultant density function four times

differentiable. This can be done by using the method of moments

(Elderton and Johnson, 1969), and approximating a polynomial to

the density functien g(@) . The rationale behind this method will

be given in Chapter 4.

•!, "o

•~
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(111.8) Transformation of Ability 6 to T

We notice that the relatively simple formulas, (3.22) through

(3.25). for the conditional moments of ability e , given I.ts maximum

likelihood estimate § , are true only when the square root of the

test information function is constant for the interval of ability of

our interest, as is the case with our original Old Test. As we have

seen earlier (cf. Section III.4), for all the other nine Old Tests,

i.e., subtests of the original Old Test, the square root of the test

information function is not constant. When we use one of these nine

subtests as our Old Test, therefore, (3.22) through (3.25) are no longer

true as they are. This problem can be solved by transforming 8 , in

such a way that the resultant transformed latent trait ¶ has a constant

value for the square root of the test information function, 1z*(¶)] 1/2

for the meaningful interval of v •

; ( Let r be a function of 0 , such that

(3.30) (0)

which is strictly increasing in 8 . The operating characteristic,

P* (T) , of the item response x defined for the transformed latent
Xg

trait T equals the original operating characteristic, Px (0) * which

is obvious from its definition as the conditional probability. Thus

we can write

(3.31) P* (T) - P* [T(8)] - ?xg(1)
x x

9 9

From (3.31) and (3.8), we can write for the item response information

function, T*r (vc) , such thatx

:i: ~ (3.32). I ( X- "- o *()

( 03) log P. (T)

-I (e)'2  lo

A& 0 gP() d2o

, " I
"""-- . ' -'7
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From this result, we have for the item information function 1*(T) ,

(3.33) 1*(r) E r T* (.) P P* ( ((.)r) I-!f
L g

since

M
(3.34) £ P (8) 0Ds O

It can be seen that, with the response pattern V , we obtain

similar results, such that

(3.35) P*(I) - e•[t(o)] ) ]

for the opersting characteristic, P*(#), and I
d62 a 2

(3.36) I*(T) * zv(e) lS o g_ d 6

for the information function, I*(r) . We can write for the teat

information function I*(T) either from (3.36) or from (3.33) such

::"(3.37) I*(-C)-W (q) (" 1a 1

anid, since I is a strictly increasing function of 0 ,we have

S(3.38) [I*(.):t1/2 - 1/2 dO.

Let C be an arbitrary constant for the square root of the
1 /2

test information function, [**(-r)] From (3.38) we can write

(3.39)

Thus we obtain for the transformation of 6 to T such that

S.... . .... - -•---•.-i - -,- :_ , ., _ _ _ _ _ . -.-
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(3.40) . C I(6)]1i dO + d

where d is an arbitrary constant for adjusting the origin of T

In practice, this transformation will. be much more simplified

if we approximate the function, [i(e) 11/ 2 by a polynomial of an

appropriate degree, using the method of moments. The detail of this

process will be given in Chapter 5.

We can write for the density function, f*(T) , of the

transformed ability

(3.41) f,() f f(e)

This equation indicates that the new density function thu- obtained

K• is no longer uniform, as is the case with our density function of

e . Figure 3-7-1 illustrates two examples of f*(T) as the

results of the transformation of 6 to T , which are based upon

Subtests 1 and 2 , respectively.

Subtest 1 Subtest 2

i OA .OA

0.0 00
"-3 o . - O •40 0 W 2.lO 010 -4.Go "0 0 &00

FIGURE 3-7-1

DWe8tY Function, f*(V) , of t Transformed fron 0 by the folynomtal
"of Dgee 8 (Solid Curve) & In Contrast to the Original Density Fumction

f(S) (Dotted Curve), vhen we used Subtest I (Left) and $ubtest 2
(li~bt) as our Old Test, Respectively.

The maximum likelihood estimate, B , of ability e , which

is based upon the response pattern V , can be obtained by using

the operating characteristics PV(0) as the likelihood function.

7-7



In a similar manner, the corresponding maximum likelihood estimate,

, , can be obtained by using P*V(T) as the likelihood function.

By virtue of the transformation-free character of the maximum I
likelihood estimator, however, this second maximum likelihood

K~i •estimate can also be obtained by the direct transformation of ,

such that

(3.42) -TOB)

(cf. Samejima, 1969).
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IV Method of Moments As the Least Sqae Solution for Fittng a
Polynomial

The method of moments (Elderton and Johnson, 1969) was frequently

used in the present study, and on many occasions it took an important

role. In some situations, we fitted Pearson type density functions, and

in many other situations we used polynomials. It should be noted that,

when we adopt a polynomial to approximate a density function, there is a

possibility that, for some range of the variable, the estimated density

turns out to be negative. In practice, however, it seldom happened, and,

even when It did, it did not seriously affect the process or the result

of our estimation. Since the polynomial is less restrictive in its shape
than many other functions which have the same number of parameters, and

in addition, its derivatives are given as even simpler polynomials, the

method of moments for fitting a polynomial looks promising.

In this chapter, the rationale and reason behind the success of

using polynomials as functions for us to fit by the method of moments

are described, end some observations are made. This part of the present

final report is mainly cited from the research report RR-79-2, which

includes the fine effort by one of the author's assistants, Philip

Livingston.

(IV.l) Approximation to the Density Function from a Set of Observations

The method of moments was originally developed to graduate the

observed frequency distribution by assuming some specific mathematical

function and fitting the observed moments of up to a specified degree.

This can readily be expanded to the case in which we wish to estimate a

density function from a act of observations, rather than a frequency

distribution.

Let u2 V and V4 denote the second, third and fourth moments

about mean of some distribution. if we preassume that the distribution
should bel.ong to the Pearson's System, then the criterion K ,which is

defined by

(4.1) K - 3) 42 -0-)4

81(02+3) 242 2 3 1 -6(4 2 3 1 )
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where 8 a end 82 are obtained as the ratios such that

(4.2) 21 -3

S(4.3) -2

takes an important role. Substituting the sample moments for V2 V3 and

IA4 in (4.2) and (4.3), and through (4.1) we can evaluate Pearson's

criterion K , and, according to its value, we decide which type of the

Pearson's system our distribution belongs to. If, for instance, K turned

out to be negative and finite, then the distribution will be of Pearsonvs

Type 1; if it turned out to be such that K - 0 81 0 and 82 < 3

then our distribution will be of Pearson's Type II; and so on.

Figure 4-1-1 shows the set of five hundred maximum likelihoods , which was introduced in Section 111.5 of the preceding

estimates, wihwsitoue nScin115o h rcdn
chapter, in the summarized form of frequency distribution. In the same

figure, also presented by a dotted line is the theoretical frequency of the

maximum likelihood estimate • , which was obtained from (3.21), using the

uniform density (cf. Section 111.3) for f(O) and n(O,a) for *(6Ie) .

It turned out that Pearson's criterion K and the: values of 81 and 82

indicated that our distribution belongs to Type I1, and the frequency

function obtained by the method of moments is drawn by a solid line in

Figure 4-1-1.

30i~ Fo

-.2) 40 O

0 • 0 W 2I 3

FIGURE 4-1-1

",•Frequency Distribution of t he F iveral dltd Yl a/ o L ikl i hoo li • t um ( Hi sto gr am),
Pear so's Typ 11 Friqu0Ac Fuction Fitt ed by the i ath of 11 't ($lid Curve)

an • d the T or etic al Fre quec y Funt io o f t he YA91i n Li kll boo Rati/ t t. i

" i7
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In contrast to this result, Figure 4-1-2 presents siilar

results, which were obtained by approximating the frequency function by

40 40 40 Go D 2.0 3030 .

• ~~0 - -

S/

30'

,20

10 J0 t
I.I

10

FIGURE 4-1-2

Frequency Distribution of the Five Hundred Nauious Likelihood at1--t.. (.istorsa),.
the Polu'onil Fitted by the Method of Ia'm•ts (Solid Curve and the Theoretical
Frequescy Function of the Ibxlinm Likelihood Istlaete. I The Thr'ee Polynomials

are of Degrees 3 ,4 and, Respectively. F

j ~ i . : ++ :, • • + +; •+ •, ' . + • • " • + * + ...+ ... •. . .. .. .. .. ...

•'•11II
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the polynomials of degrees 3, 4 and 5 using the method of moments,

respectively. Comparison of these results with Figure 4-1-1 may make
us prefer polynomials to Pearson type frequency functions, because of

their flexibilities in shape. This is especially obvious when we
compare the Type II frequency function With the polynomial of degree 4,
in both of which the first through fourth moments were fitted.

Figure 4-1-3 illustrates two polynomials fitted by the method of
moments to each of the two sets of observations. The figure belongs to
the combination of the Two-Parameter Beta Method and the Curve Fitting
Approach, Degree 3 Case, which will be introduced in the following

chapter. 2,500 observations of 8 , which were produced by the Monte

Carlo method, were classified into two groups, i.e., the success and the
failure groups for an unknown binary test item, item 4 . These two

subsets of observations are shown in Figure 4-1-3 in the summarized form
of frequency distributions, by thick and thin lines. For each subset,
polynomials of degrees 3 and 4 were fitted by the method of moments, and

are shown by a long, dashed line and a dotted line, respectively.

(012

ZI
02

N1o I. / I

• 0.1// ,

0/

RR-78-1 LATENT TRA," 9

Iselative Prequencies of 0 Shared by the Success (ThiLck Line) and the Failure (Thin* Line)
•," '• Groups and the Correspondin8 Polynomatls of Degree 3 (Long Dashes) and of Degree 4 (Dots)

f•or Item 4 .Two-parsmeter Not& Vsthod And Curve Fitting Approach, Degree 3 Case.
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(IV.2) Method of Moments As the Least Squares Solution for
Fitting a Polynomial

Lot h(t) be any function of the variable t , which is defined
in a closed interval, Et, i) , and is integrable in the Lebesgue sense

and has the first m moments. This function h(t) can be some

specified mathematical function, or an empirically obtained function.

Let ai (i0,i,2,...,m) be the i,-th coefficient of the polynomial

which can be written in the form

m

(4 . 4 ) - a i t
IJN i-

ilm

and is to be fitted to the function h(t) following the least squares

principle. We define Q such that

(4.5) 2Q- [h(t) - E a i t I dt
t -

Differentiating Q with respect to ar and setting the result equal to
zero, we obtain

m
(4.6) JR [h(t) - a ai ti[-tr] dt - 0

r t 1=0 i-

and then

(4.7) tr h(t) dt t E ai t dt
tt i=O-.

for r-l,2,...,m

Thus it is obvious from (4.6) that the least squares principle

requires the resultant polynomial of degree m to have the same 0-th

through m-th moments as h(t) , which is nothing but the principle

upon which the method of moments is based. From this result, it is

obvious' that both methods provide us with the same polynomial.

I.

- •M
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When the function h(t) is observed only at N points of the

variable t , as is often the case for an empirically observed function,

we can replace (4.5) by

N 2
(4.8) 2Q - Z {[h(tk) - 1: Li tk] W(tk)}2 ,

k-1 1-0

where w(tk) is some appropriately chosen weight for t
Differentiating (4.5) and setting the result equal to zero, we obtain

N N mi(4.9) E t r h(t ) w(tk) . E tkr w(t ) E a t .

k-i k-l i-0 1k

If the function h(t) is continuoue and we divide the interval it, tl

into N sublntervals, by the middle value theorem there exists at least

one value, •kr ' in each subinterval (t k, tk) which satisfies

i!' ~~tk rrh(r)_tk

(4.10) tr h(t) dt 4r i ( Sk

t:' where

(4.11) t k+l

for k 1 i, 2, ... , (N-l), and

t t
(4.12)

When the width of each subinterval is small enough, these (m+l) values,

kr (r-0,1,2,...,m) , can be approximated by a single value, say the

midpoint of the subinterval. Using such a value as tk and the
isubinterval width as w(t k) , we can approximate (4.2) by (4.6). If all

the subinterval widths are equal, (4.6) is simplified to provide

(4.13) Z tkr h(tk) r E 0 i tk
k-l k-I 1-0

1!A"
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(IV.3) Direct Use of the Least Squares Solution

We can rewrite (4.4) in the form

(4.14) US - Z Mi-I [j+s-1]-i [t -J+s-l " tJ+s-l]

where s-r+l-1,2,,o.,m+l . J-i+l-l,2,...,m+l , and u.' is the

(s-l)-th moment of t about the origin, defined by

(4.15) a t_ Bs-1 h(t) dt

f

Let a be a column vector of order (m+l), whose J-th element is OJ_,

and V' be a column vector of the same order whose s-th element is is'

Thus we can rewrite (4.11) in the matrix notation to obtain

(4.16) ' Ao ,

where A is a symmetric matrix of order (m+l) whose nj-element is

given by

(4.17) [j+s-1- 1 fEt~s 1 
- ti+s4]

The least squares solution for a is obtained, therefore, by

(4.18) A-'.

For the purpose of illustration, the matrix A for m - 2 is shown

below as an example.FE - t) (12- t 2 )/2 (n-

4(1*- t3)/3 (j4_ _.4)/4 (i5. t5)/5J

In practice, we usually use a greater value for m , and obtaining the 3
inverse matrix of A will be the most intricate process of computation,

and the availability of a package program for inversing a symetric

matrix will be of necessity.

"II,

Ii
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(IV.4) Solution by the Method of Moments

Let R(t) be a half of the interval width for wVaicb the

function h(t) is defined, and M(t) be the midpoint of the interval,

such that

(4.20) R(t) - t-t)/2

and

(4.21) M(t) - i+ t)/2

For convenience, we define a new variable t* by changing the origin

of t to the midpoint of the interval Et J*i.e.,

Thus the polynomial of degree m in t can be rewritten as a

polynomial of the same degree in t* or

m m
(4.23) E a t a~ t*~

with the relationship between the two sets of coefficients much thatI

a fo(~t
r

(4.24) ,1 i-r a~(') [M(t))]' otherwise,

r' 0,,2 .. r

The following relationships hold between the moments about the

midpoint M(t) and the coefficients a (r'sl,2.60.00m).
r

(4.25) -~g 2. 1 a [2(g+k)+lJ]- [R(t)3 m2

(426 1g+l k- 2 2k+l g-O.l,2,.,,,C(.-l)/2J

- ~Y~Lrz ~ ~ '-*-- ~ ~ 7-7
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In the above two equations, C 3 indicates the integer part of the

number, and )Ag and u l indicate even and odd moments about the

midpoint, M(t) , respectively.

Let p'g+l and q-k+l . We define the following two sytmetric

matrices, B(O) and B(1 ) , whose orders are both (m+l)/2 when m

is odd, and (m/2)+l and (m/2) when m is even, respectively.

(4.27) p(t) 1 2(pq)-3 [2(p+q)-33 - }

(4.28) H { [R(t)] 2 (+q)- L [2(p+q)-1]- 1 }

Let 10) and pt.) be column vectors of the corresponding orders,

such that

(4.29) )IO) " { I•(--1) }' p-,l,2,...,Cm/23+I ,1""to, 201

;. 'and
(4.30) I•1) )1* u•,_: )' *-.,,,..,[(m1)/2] .

Let and a denote the coefficient vectors of the -

corresponding orders, which can be written as

(4.31) a( 0 ) - (e 2 (q-1) 1' q-l,2,.,[m/2]+l,

and

(4.32) a( 1 ) - ( 2q q-l,2,...,(u+l)/23

Thus we can rewrite (4.25) and (4.26) in the matrix notation such that
' 'S

(4.33) po) 2B(o)a(o)

and I
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(4.34) tl)- 2B( 1)a(l)

The coefficient matrices a(0) and a(,) are obtained, therefore, by

(4.35) aCO (1/2)B1

and

(4.36) £(1) - (1/2) B( U )

In practice, the computation is facilitated if we define two matrices,

C and C(l), of orders Em/2)+1 and E(m+l)/23, respectively,
(0)

such that

(4.37) C(O) [2(p+q)-3J' )

j and

(4.38) C(1) = { [2(p+q)-1" 1 ,

which do not depend on a specific set of data but depend only upon

the degree of the polynomial. From these two matrices, we can obtain

the two matrices, (1/2) C( and (1/2) CI). , and it is easily

seen that ( 0/)B and (1/2) B~l are obtained by dividing the

J' element in the p-th raw and q-th column of the corresponding matricest " ,1 by [R(1) 2 (p+q) and JR(t)) 2 (t )-I , repectively, for every

combination of p and q . The resultant sets of equations for

obtaining the coefficients ai are listed below for the polynomials

of degrees 3, 4, 5, 6 and 7.

lli,
',

f" I
"': '-F--'
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M1 Polynomial of DOILTOO 3

Sa0 " [1.l25MOO/3HJ [1.OT5112/Rs]

J 1  (9-375131/1R'] 1.2uf'
N. ~~~(4.39) rA..~

a3 [-13.1.~25P*/E4J + 121.I8T5U*Pt'J

(ii) Polynomial of Dears* 4

:1 a. - 3751Ji0/0J - E[13.125tu*/R']

(4.0)a 2 - -8.2032.251u*/R'l + [68.9o6251i ;/RsJ - (73.628125pit/R')

la£3 13.125p*/Jl +~ 121.875V/ 7]-

&4 fy.3826125U*/lt5] - [73.028125u*/it?] + t86.13281251ij/iti]

(iii) Polynomial of RDprea 5

*o -tl.757Sl25im 8/I- (1.2O3l25pl/all + 17.3S28125tj*IR'I

a(28.71093751j*/R'j - (l03.3593751u*/RI + 18l.2lO93751u*/R']

a :18.2031:5ijt/R' + I 68.90:25UJIR'i - 173.828125u*/R7]

(4.41)a2

04 [ 7.392812548/Ri - 173.828125ul/R7] + 186.1328l25uZf/t' 1.

&5W 0 1l.210937511111') - 378.96A375ul/R'l + [34l.085937S1JI/R'J

(iv) Polynomial of Degree 6

a 1 2.3925MUVlIi/J - 21.5332 03lI1i*/RS] + [73046P/s0 0 27349~I/~
- 29.3261719pt/Rl]

a 128- [71093751j*/Ra) - 1103.359S75MO/RhI + 111.2lO93751j/PR']

£2 1 -21.533203l1.i/R'] + [348.8378906 10

- 19l3,6230469pt/R7 1 + [615,84960941pt/R9]

1-lOS. 35 9 3751it/RsJ 429"5*j~

a [4.7061*Rl- [913.6230469u*/R7]

+ [26O5.517578lJtIR]l - 11847.5488281lit/R'1

a5-S.2O37u~aj 378.994375u*/Rlj + 1341-08593751J3R1 1

£6' -29.3261719,j*/R 7] + 16I.5.8496094liv/a']

- [847.5488281)jt/RI' + (1354.86914061ii/R 13J

6I
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(v) Polnomial of Degre. 7

sO A [2.392571s.•0I) - (21.53320311MI/I'" + [47,37304690j4/101

- 129.3261719pt/1'7

1 [64.5996094pl/1'J - [426.3574219•i/Raj

+ 1791.906640601/I 7 ] - 1439.8925781PI/1'J

'2 .1-21.5 332031p3o/a' + [348.8378906 1iit1
- 1913,62304691it/t'l + 1615,496094iP3•/il

a3 1- [ 4 2 6.357 4 2191t//Ia + [324.9.951s719j*/R73

- (6774.345703lo/lltI + [3959.03320311+1l)

(4.43) % [47.373046911I8 01 - 1913.623M461 1/R71

+. (2605.51757Bl1a2 /1'1 - 11947.548828l~IMul')3

5 [791.806640611*/It] - [6774.3457031u13/l]

+ 114410.8808594pt/1"I t 7 109.873C4694•/ 1

a6 , -29.32617191/R'l] + (615.S496C094/R'l

- [1647.54U62S4*/I 1 + I . [354.8691406u•/10]

a7 -[439.6925781/i/R'] + (3959.0332031"t/I]

1- 8709.8730469I/ 1 "/] + [5391.8261719ol/1i''

(For simplicity, in the above equations, It is used instead of C(t).)

From the values of a 's thus obtained and the midpoint

M(t) , we can find out the values of the coefficients, Mt's

by means of (4.24).

(IV.5) Expanded Use of the Method of Moments f
As we have observed in the preceding sections, the method of

muments for fitting a polynomial can be considered another procedure f
for the least squares solution. It has a definite advantage over

the direct least squares solution, since the computation of the

coefficients, ai (i-O,l,2,...,m) , can be done by the application

of straight-forward algebra, while the direct procedure for the least

squares solution Involves the inversion of the matrix A .

This fact implies that we can adopt the method of moments for

fitting a polynowial for the approximation to any target function,

which is not necessarily a density function or a frequency

distribution. In fact, in the present study, we used the method for

"approximating the square root of the test information function of the

II

. ..... . .*-- z=+7I+ ZC -
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Old Test, among others, which facilitated the transformation of

ability e to T . The rationale behind this method will be
described in the following chapter. .

(IV.6) Selection of the Interval

When we fit a polynomial to a frequency distribution or a

set of observations, the selection of the interval is more or less

P• automatical. When we use the method of moments for fitting a

polynomial to a function other than those, however, the goodness of

fit of the polynomial to the target function depends largely upon
our selection of the interval.

Figure 4-6-1 illustrates such a situation. In this figure,

the square root of the test information function, EI(e)]1 12 . of

"Subtest 1 is drawn by a solid line. The other two dashed and

dotted curves are the polynomials of degree 7 obtained by the

method of moments, uGing the intervals of 8 , E-3.0, 3.01 and

401

0.0

-4.0 -&0 -2A0 -t 0.0 10D 2.0 10 4.0

LATENT TRAIT 0 1
FIGURE 4-6-1

Square Root of the Test 1nfort•tioo tnuatio of Subteat 1

MO(M)]1/2 , (Solid Line) end the Polynomials of Deree 7
Which were littad by the Method of Moments with [-3.0, 3.0]

(Dashes) aid 1-4.0. 4.01 (Dots) is the Interval of a
Respectively.

I
" |I
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[-4.0, 4.0] respectively. We can see that the latter polynomial

fits much better than the former to the target function. This

implies that, although the interval of ability e of our interest

is even a little smaller than [-3.0. 3.0] , in order to obtain a

polynomial which fits to the target function in this interval, we

must use a larger interval such as [-4.0, 4.0)

We cannot generalize this result too much, however. Figure

4-6-2 presents a similar set of curves for Subtest 2 . It is noted

that, while the fit is better for the polynomial obtained by

using the interval, [-4.0, 4.0] , than the one obtained by

using the interval, [-3.0, 3,0] , in the former situation there

still is a substantial discrepancy form the target function.

410

i H !

Q0

-4.0 -360 -2.0 -1.0 Q0 1.0 2A0 3.0 4.0
LATENT TRAfT 0

FIGURE 4-6-2

Square Root of the Test !afowmatiou Vuaction of Subteat 2.

[110)] 1/ (Solid Line) end the 7rolynamials of Degree 7,
Uhich were Fitted by the )Iothod of Yomente iwith 1-3.0, 3.0]

(Deshes) end [-4.0, 4.0) (Dots) " the Interval of.

Figure 4-6-3 presents the result obtalned by using the three

subintervals of [-4.0, 4.0) , with - -1.5 and 0.5 as the.

cutting points. These three polynomials are uniformly of degree

'4I I II

,• j -. -4. -0 -2• -t O 1 L 9 4



-42- IV-15

4 . We can see that, together, they fit very well to the target

function. This is another way of using the method of moments.

40

IL

'30D

20

0I i l I I S ..

-A,0 .& 0 .2.0 - o 1.O 2.0 3,0 4.0
LATENT TRAIT 0

FIGURE 4-6-3

square yAot of the Test 10noTMstion p•ctim of !ubbest

2, E1MI)1 12 , (Solid Liun) and the Th:ee Pol0YmoUIAl
of Degree 4 (Dots), Uhich Were Fitted by the method of

N -its Using the Three Subintewvalv of a

The use of subintervals may be effective when we apply the

method of moments for fitting polynomials to relatively smooth

mathematical functions. The same is not necessarily true$ however,

if we use the method of moments for empirical data. Figure 4-6-4

illustrates such examples. Our data are again the set of five

hundred maximum likelihood estimates s * and, in the first graph,

it was reclassified into the lower and upper subsets of 250

observations each, and, in the second graph, in a similar manner,
it was divided into five subsets of 100 observations each. The
polynomials shown in these two graphs are uniformly of degree 4 T V

We can see that neither result is appropriate for us to use as the

estimated density function, 9(6) " i

To conclude, the selection of the interval or intervals is

very important in order to use the method of moments for fitting

-J 3
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a polynomial or polynomials successfully, and we must make a good

judgment in each situation considering the expected shape of the

target function, and the nature of our data.

40 I

30 . 0

SoS

Polysomial Approximations of the Demttv Function g(e) of the set of live
Hundred Maxidn Likelihood Zltinates 0e Obtained upon the Original Old Test
by the Method of Momvet., by Dividiaf t-&e Total Sat into Two Subsets (Left)

an Into Five Subeets (ULht).

There are many examples other than those illustrated here,

and it is recoemmnded that the reader refers to the research report,

ER-79-2, and many others such as U-78-1, RR-80-2 and RR-80-4.

(IV.7) Comparison of the Results Obtained by the Method of Moments
and by the Direct Least Squares Procedure

Comparison of the polynomials obtained by the method of
"moments and by the direct least squares method was made by using

the standard normal distribution function as the target function

(cf. RR-79-2). It was made by changing the interval of 8 for which

these methods are applied, and, as is e=pected, in most cases the

resultant two polynomials are identical.II
There are somewhat different results, howevero Figure 4-7-1

presents such an example. In this figure, the resultant polynomial

obtained by the method of moments is plotted by dots, and the one
obtained by the direct least squares method is shown by short dashes.

In both cases the interval of e , [-6.0, 6.0] , was adopted. It

_7I
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OS

.0 I6

I I

' '

! .. I

I-." I

0.0 VIO*-.v 0.212

.6D -5D -40 -3D -20 -10 0O. tO 2.0 3D 4.0 5.0O

R.R-79-2 VARIABLE Q t

FIGURE 4-7-1

Polynomials of Degrea 7 Obtained by the Method of Moment& (Dots) and tbA Least Squares Solution
(Short Dashes) ,with the Interval, (-6.0, 6.0] , •nd the TFeylor's Series (Long Dashes),
Approxiating .the Standard Normal Distribution Function (Solid Line). Those Obtained by the

First Two Methods Uzing the Interval, E-3.0, 3.01 , Are Also Plotted (Crosses).

is noted that, while the result obtained by the method of moments fits

to the target function reasonable well for the total interval of 6 r

6 ,the one obtained by the direct least squares solution diverts, quickly,

from the target function outside the interval, (-2,0, 2.0) . This

diversion comes from the limitation of the capacity of the computer

in inverting the matrix A . This example also suggests, therefore,

that it is wise for us to use the method of moments Instead of the

direct least squares method. In the same figure, the corresponding

two polynomials obtained by using the interval of 6 , [-3.0, 3.0] , 1.

are also plotted. Since they are identical, they are drawn together

by crosses, and only for the interval where the curves divert from -*

the target function. i
We recall that there is another type of polynomials which are

A l

:•:-,• t "a"

-. LA". --- ~o :' --.. . . -. . . . .. • - .-
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obtained by Taylor's series. Using Hermite polynomials (Kendall and

Stuart, 1963), we can write for the Taylor's series for the standard

normal distribution function such that

(4.44) N(0,1) - 0.500000 + 0.3989426- 0.06649036' + C.00997355 6r

- 0.00118732 e7 + 0.000115434 69 -

- O.00000944465611+

The resultant polynomial of, degree 7 is drawn by longer dashes in

Figure 4-7-1. It is noted that the fit of this polynomial to the
target function is better for the interval of 6 , (-1.7, 1.7) ,
but outsiLde of this interval it diverts from the target function

quickly. This is a comon tendency over the results of different

degrees of polynomials (cf. RR-79-2).
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V Estimation of the Operating Characteristics of the Discrete Item

Responses and That of Ability Distributions: II

In the present uhapter, following Chapter 3, we shall

continue integrating the rationale and findings of this part of the

research. Throughout this process, the method of moments will

frequently be used, especially, for fitting polynomials. The

reasons for the choice of the polynomial in preference to the other

functions were described in the preceding chapter. Among others,

it provides us with the least squares solution.

(V.M) Estmated ,Operating Characteristics Which Are Directly
Observable from Our Calibration Data

Since our data are simulated data, the proportion correct

for each of the ten unknown, binary items (cf. Section 111.6) is

directly observable. Figure 5-1-1 illustrates two sets of the

proportion correct for item 6, by solid and dashed lines,

respectively, together with the theoretical item characteristic

function. The subinterval widths used for these two curves are 0.05

08

to.8

I I:os

020

.40 0 -2. -to 0. to 20
e

FIGURE 5-1-1

Proportion Correct for Mta 6 Using tt? 'Subinterval Width 0.05 (Solid Line)
and 0.25 (Dashed Line), and the Similar Result Obtained by UsinS the Naxitum
Likelihood Estimate a Instead of Ability 0 and the Subinterval Vidth 0.25

S(Dotted Line), Together with the item characteristic Function (Solid Curve).

Aw'
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and 0.25 , respectively. Thus. in the first case, five hypothetical

examinees sharing the same position (cf. Section 111.3) makes the

total frequency for each subinterval of e , aud, in the second case,

twenty-five examinees sharing five adjacent positions makes the

total frequency. We can see from these results that they are by no

means good approximations to the theoretical item characteristic

function, because of their large fluctuations. The reason is that

we have only five hundred hypothetical examinees in our calibration

data.

It should be noted that these two curves in Figure 5-1-1 are

not observable, if our calibration data are empirical data. In

practice, the closest we can get from our empirical data is,

therefore, the proportion correct based upon the maximum likelihood

estimate 6 , instead of ability 6 itself. This third proportion

correct for item 6 is also plotted in Figure 54-1- by a dotted line,

using the set of five hundred maximum likelihood estimates obtained
i : upon our original Old Test (cf. Section 111.3). The subinterval

width for this proportion correct is 0.25 , as was the case with

the second curve based upon ability 6 . Again, we can see that

the fluctuations from the true item characteristic function are

large.

As was poin.ed out in Section 111.7, the use of indirect

information obtainable from our calibration data will ameliorate

the situation. If our results provide us with better approximations

to the theoretical item characteristic function than those three

curves do, therefore, we shall content ourselves by deciding that

oour methods are successful.

(V.2) cssary Correction for the Scale of the Maximum Likelihood
SEstimate When Used As a Substitute for A•1•..-lt Scale

It is commonly taken for granted that,'whenever the scale "•

of the maximum likelihood estimate is available, it can directly be

used as the substitute for the ability scale. The reader may

wonder, therefore, why we need an elaborated process of estimating
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the operating characteristics when the set of maximum likelihood

estimates of ability is available. If our calibration data contain

only several hundred examinees, because of the sampling fluctuations I
they cannot provide us with a good approximation to the theoretical

operating characteristics, as we have seen in the example given in

the preceding section.

Our next question will be: Is it justifiable to use the

scale of maximum likelihood estimate and its proportion correct for

the estimated item characteristic function when we have a large set

of calibration data, like those based upon twenty thousand examinees?

The answer still must be "No," or "Not without some modification."

Let us assume that our Old Test provides us with the

approximate unbiasedness of the maximun likelihood estimate 6

and the normality for its conditional distribution, given ability

6 , for the interval of 0 , (p,e) , of our interest. Thus we

can write

(5.1) E(6le) - 0 .

From (5.1), we obtain for the expectation of 0 such that

(5.2) E(9) - 0(§ 16) f(o) dO - E(e)

By virtue of the binomial law, we have, from (5.2), for the m-th

moment of • about the mean Ii
m

(5.3) E[6-E(6)] M
- (m E[{O-E(6))mr' M~~er~}

r-O r

From (5.3), we can write for the specific cases where m 2, 3 and

4'

(5.4) Var.(6) = Var.(6) + E[Var.(618)] ,

(5.5) EE{6-E(0)3  I~-~)j 3] + 3E[{e-E(6)1 Var.(010)

[ : i

iiJ• rfi::.c .[**~..---~
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and

(5.6) E[{0-E(•)1 4 ] * E[{8-E(8)1 + 6E[{G-E(B)} 2{E{Var.(6I8)Y1
+ El (-8) 4 je I

The above results imply that the distribution of the maximum

likelihood estimate § is different from that of ability e , and,

above all, it has a larger variance. Since the proportion correct

is the ratio of two such distributions, these results indicate that
it contains a biac in itself.

The correction for this distortion can be made in the
F' following way. Lot us assume, tentatively, that the square root of
[•. the test information function of our Old Test is approximately

constant for the interval, (e,O) , as is the case with our original

Old Test (cf. Section 111.4). Then the conditional distribution of

:I • given 8 , is approximately N(6,a) , where a is the
reciprocal of the constant square root of the test information
function, tM(e)]"I 2

. Under this condition, the formulas (5.4)

through (5.6) can be simplified to provide us with

(5.7) Var.(0) - Var.(O) + a2

(5.8) E[{§-E(O))3 ] - BO- ]

and

(5.9) E[{6-E(§)} 4 ] - E[{e-E(e)} 4 ] + 602 Var.(0) + 3a4 I
Thus the distribution of • has the same mean and the third momeut

about mean as that of ' I
The regression of ability 8 on the maximum likelihood

estimate t is given in Chapter 3 as (3.22) . To reproduce it,

we have

d
(5.10) E(6j4) - + o2 • log g(6)

"" . ... .....-.. .. ... . ...... . . .. ,,
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where

(5.11) g(O) - e(8) f(8) d6

Note that the regression, which is given by (5.10), is not

necessarily linear, although that of the. maximum likelihood 8 on

ability 8 I.s. (5.10) can be evaluated if we approximate the

density function, g( 6 ) , by, say, a polynomial obtained by the

method of moments,, We can shift the value of 6 , therefore, to

E(0 16) , so that we make the proportion correct for a specific

value of 0 the function of the corresponding value of E(8O) .!

When the square root of the test information function of our

Old Test is not constant, as is the case with each of the nine

subtests of our original Old Test, we cannot directly apply the

above method. In such a case, we must transform 6 to T , follow

"the whole process by using T instead of 0 , and then retransform

T to e . The rationale behind this transformation ts given in

Section 111.8 , and its actual procedure, using the approximation

to the square root of the test information function by a polynomial

obtained by the method of moments, will be 'given in the following

section.

k The observations made in this section have nothing to do

with our methods and approaches for estimating ability distributions

and the operating characteristics of discrete item responses,

however. In the present study, either the conditional distribution

of ability G , given its maximum likelihood estimate e , or the

bivariate distribution of 6 and 6 is approximated from our

calibration data. This does not include, therefore, the direct

frequency ratios of the maximum likelihood estimate, 0 . ""

(V.3) Transformation of 8 to T Using the Method of Moments .
for Fitting a_ Plynomial

The rationale behind the transformation of 0 to T is

given in Section 111.8 . 'Tis process will be simplified if we 1

S i

--- I ~
S. .. . ... . :.• i•'' -' -
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use the approximation to the square root of the test Information

function oi our Old Test by a polynomial fitted by the method of
moments. In so doing, the right selection of the interval of 0
for which the aethod of moments is applied is very important, as

was explained in Section IV.6.

We can write

(5.12) [1(8)I1.2 k- .

where m is the degree of the polynomial we wish to obtain.

Substituting (5.12) into (3.40), we obtain

(5.13) T" C-I Zm (k+1Y' 0 + d

M+l *kk-O

where

-d k-0
(.1) "(Ck)-I ak-l k -1,2,...,m•1

Thus the transformation of 0 to T can be made through another

polynomial of degree (m+1 . Considering that (3.40) includes a

tedious numerical process of intQgrating [1(65]1/2 , the straight
forward method given by (5.13) and (5.14) will save us a substantial

amount of time and labor.

Figure 5-3-1 presents the transformation of 6 to T

obtained by this method, for Subtests 1 and 2, to represent those
"for the nine subtests. In all of these nine cases, the interval,

(-4.0, 4.0] , was used in applying the method of moments.

Figure 5-3-2 presents the resultant square root of the test
information function, [1*(t) , for Subtests 1 and 2. As ix

___7= ,__



-52- V-7

40 40

4W .
2o 2.

.0 4. 0 40 -to .O tO 2.0 .4.0 -,1 W

0

FIGURE 5-3-1

Transformation of e to t for Subtests I and 2

6 Subtest 1 DS

•~~~~~~~uts 2osatC£r$bet n

40 4

ILO

h i * 0 I 1 2

V -. 040 2. -1 OO 10 .03.0 4.0 CO4.0 -3. 2.0 -1.0 00O 1.0 2.0 30O 4.0

T

FIGURE 5-3-2

Square Root of Test Information Punctiam, tI*(j,)]1/2 and the Target1: IConstant C for Subtests 1 and 2

expected from the different degrees of fitness of the polynomialsI
to the respective [16] s in these two cases, which are shown
in Figures 4-6-1 and 4-6-2 of Section IV.6, respectively, the

.4w
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resultant [I*(T•)]l/2 for Subtest 1 is closer to the target

constant than the one for Subtest 2. For all the other seven

subtests, the result is similar to either one of these two results,

or their fitness is somewhere between the two.

(V.4) Classification of Methods and Approaches

Various methods and approaches for estimating the operating

characteristics of discrete item responses, and for estimating

ability distributions, were developed in the present study. For

convenience, by a method we mean a way of approximating the

conditional density function of ability 6 or T , given its maximumA

likelihood'estimate 6 or T , and by an approach we mean a way oZ

producing the ability distributions of separate discrete response

groups, and hence the operating characteristics (cf. Section 111.1). .
They are summarized as follows.

(A) Methods

(M) Pearson System Method

(ii) Two-Parameter Beta Method
(iii) Normal Approach Method

(B) Approaches

(i) Bivariate P.D.F. Approach

(ii) Histogram Ratio Approach

(iii) Curve Fitting Approach

(iv) Conditional P.D.F. Approach
(a) Simple Sum Procedure
(b) Weighted Sum Procedure
(c) Proportioned Sum Procedure

Prior to the present study, the author had developed a

method (SameJima, 1977) of estimating the operating characteristics

of discrete item responses, which, later, was called Normal
Approximation Method. With the classification given above, this

method belongs to the Bivariate P.D.F. Approach. Although it had

• • '-•-~~~~. . -.. ... . ....... __, "" " ....... ... .. . .." . .".".. .
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been developed before the author started the present study, a brief

description of this approach will be given in Section V.5, so that

the'reader will understand its characteristics and the differences

from the combinations of a method and an approach, which are the

main products of the present study.

(V.5) Normal Approximation Method

Let h(0) be a linear function of ^ , which minimizes the
quantity Q , such that

2(5.15) Q = E[e-h(b)]

We obtain

i:(5.16) h(6) -cov.(6,6) [var.())1- [6-E(e)) + E(e)

where Cuv.(e,6) denotes the covariance of ability 0 and its

i" f maximum likelihood estimate 6 .

When the square root of the test information function of

our Old Test is approximately constant for the interval of 9 of

our interest, as is the case with our original Old Test, we can

write from (5.7)
*I

(5.17) Cov.(0, 6 ) - Var.(e) - Var.(j) - a2 .

Substituting (5.17) into (5.16) and rearranging, we obtain

(5.18) h(6) - [l-2{Var.(6)-l ][-E(O)] + E(0)

- [0o2 Var.(8))- 1 a + o2[var.(6)1-1 E(6)

From this result, it is obvious that the two coefficients, a and

$ , can be estimated from the set of maximum likelihood estimates.

When the Joint distribution of 0 and e is normal, this function,

h(6) , becomes the regression of e on 6 In such a case, the

A conditional distribution of 0 , given 6 , is normal, with

flY tlirrr r.:;"ry-r'--rtn-r--•, . .
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the common conditional variance such that

A 1
"(5.19) Var.(8 2) o2 [l-a2{Var.(0)f-]

In the Normal Approximation Method, a bivariate normal

distribution is assumed for the joint distribution of e and 8

for each Gubpopulation of examinees who share the same discrete
item response to an unknown test item. With our calibration data,

there are two groups of examinees, i.e., the success and failure

groups, for each of the ten binary test items (cf. Section 111.6).

For each of the five hundred maximum likelihood eatimutes,
SS , using the Monte Carlo method, a single value c,ý 4 .-(.s

calibrated. Let 6 denote this calibrated value of 0 . Then we

have two subtests of 0 , for the success and failure groups of

item h , respectively. The ratio of the frequency distribution of
the success group to the sum of the two frequency distributions

makes the estimated item characteristic function of item h

SFigure 5-5-1 presents by hollow circles the estimated item

characteristic function of item 6, thus obtained by using 0.25 as

the subinterval width of frequency distributions of 8 . In the

"same figure, also presented by solid triangles and hollow squares

are the estimated item characteristic functions obtained by
producing five and ten I 's for each of the five hundred macimtum
likelihood estimates, 0s , respectively, in order to increase the

accuracy of estimation. We can see that even with the five hundred

's , the estimated item ch- .-acteristic function is fairly close

to the theoretical item characteristic function, and it becomes

closer when we increase the number of 0 's to 2,500 and to

5,000.

When our Old Test does not have a constant square root of

the test information function for the interval of 6 of our

interest, as is the case with the nine subtests of the original

Old Test, we can transform e to T and follow the same process.

To obtain the estimated operating characteristics, we can

- ~ 4,,

S.. ..~ ~~ -.... .r"r.,-•'",o, , .. ,•", .-.T.,•-~----•
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1.0
00

05 o
I, ~Item 6=

0
0

0.0
-3.0 -2.0 -10 0.0 1.0 2.0 3.0

LATENT TRAIT 0

SI FIGURE 5-5-1

Estimatod Itm Characteristic 1Fctions of Itm 6 &a&ed upmo 500 'se
(ibolow Circles), upon 2,500 0 's (Solid Triangles) and upon 5,0006 Is (Hollow Squarei), by the Normal Approximation Xethod, Using

the Original Old Test.

retransform T to e after the process has been completed (cf.

Sections 111.8 and V.3) •

S(V.6) Approximation to the Density Function of the Maximum V
Likelihood Estimate _ a Polynomial Obtained by thee
Method of Moments

It is noted that, in the Normal Approximation Method, the

margi~al density function, g(6) , is totally unused. In contrast

to this fact, in the present study, we make the full use of this

marginal density function. In so doing, we approximate g(6) or
g&() , depending upon the necessity of the transformation e to

S, by a polynomial obtained by the method of moments. An example

of this approximation was already-given in Section IV.l, as Figure

.: t!
S4V>.J.."l
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4-2-1 • In this example, three different polynomials of degrees 3,

4, and 5 were fitted to the total set of five hundred maximum

likelihood estimates ,s , which are based upon the original Old

Test. These three different situations are called Degree 3 Case,

Degree 4 Case and Degree 5 Case, respectively.

Figure 5-6-1 presents another example of approximating the

density function by a polynomial obtained by the method of moments.

In this example, howaver, the target density function is divided

into two portions, which belong to those who cinswered item h
correctly and those who did not, respectively, and three polynomials

of degrees 3, 4 and 5 were fitted to each portion. The result

illustrated here is for item 6, and the original Old Test was used

for producing the five hundred maximum likelihood estimates.o, /
>- Q

-W -2.0 -1.0 00 1.0 2.0 3.0 40

MAXIMUM LIKELIHOOD ESTIMATE

FIGURE 5-6-1
Approxemations to the No Fortions of the Density Function, g(i) , for the
Success and Failure Groups of Item 6, Respectively, by Polynomials of Degree
3 (Dots), of Degree 4 (Short Dashes) and of Degvee 5 (Long Dashes) Obtained
by the Method of Moments. Maximum Likelihood Estimates Are Based upon the

Original Old Test, and Are Shown Aa wo Histogram.

To distinguish the two subset- of the maximum likelihood estimates

from each other, the histogram of s for the failure group is

marked with crosses, and the one for the success group is marked
with solid triangles. The two polynomials of degree 3 are drawn by

dotted lines, those of degree 4 are plotted by short dashed lines,

and those of degree 5 are drawn by long dashed lines. This is an

' I
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example chosen from those which are used in the Bivariate P.D.F.

Approach, which will be introduced in Section V.10 . From these

approximated density functions, we can obtain the estimated

conditional moments of ability 6 , given its maximum likelihood

I, estimate ^ , through the formulas (3.22) through (3.25).

Table 5-6-1 presents the number of hypothetical examinees

for each of the two subgroups, i.e., those who answered correctly

to each of the ten unknown, binary test items and those who did

not, respectively. There are seven hypothetical examinees to be

TABLE 5-6-1

ftsbers of lpe"thatiael 2hmin~aes Who Belong to the Success and fallur.
Groups of lach of the Ten Unknown, Binary Test Item, egsatlve Number

Shown in Brackets After Each Entry Indicates the Nuaber of Examinees to
* Be Subtracted When We Use Degree 4 Case for the Total Set of maiums
SLikallohod lestmates Which Ave Eased Upon the Original Old Test.

!, mh Failure Success
I Item

Subgroup Subgroup

1 22 (-3) 478 (-4)
2 68 (-1) 432 (-6)
3 100 (-3) 400 (-4)
4 150 (-3) 350 (-4)
5 202 (-3) 298 (-4)
6 246 (-3) 254 (-4)
7 302 (-3) 198 (-4)
8 345 (-3) 155 (-4)
9 399 (-3) 101 (-4)
10 429 (-4) 71 (-3)

excluded in Degree 4 Case, when we use the maximum likelihood

"-estimates based upon the original Old Test and either Two-Parameter

Beta Method or Normal Approach Method, which will be introduced in

Sections V.7 and V.8 . For one of them, the estimated density [
function, g(•) , assumes a negative value, and, for the other six,

the estimated conditional variance, Var.(8I1s) , turned out to be L
negative. The frequencies to be subtracted from those for the

success and failure groups fot each of the ten unknown, binary test [
items are shown in brackets in Table 5-6-1. Exclusions of
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examinees happened in some other situations where we used different

methods and/or different Old Tests, but the number of examinees

excluded does not exceed nineteen.

In most of our studies both Degree 3 and 4 Cases were used,

and sometimes Degree 5 Case was added. As it turned out, in all

situations, the resultant estimated item characteristic functions

of the ten unknown, binary test items are practically identical

across the cases for the meaningful range of ability 0 . This I
proves the robustness of our methods and approaches over the

approximation to the density function, g(6) .1

(V.7) Pearson System Method

We shall assume that the square root of the test information

function, [1(0)]1/2 , of our Old Test is not constant, as is the

case with most practical situations. Thus we need the transformation

of 6 to T , and, at the end of the whole process, the

retransformation of T to e , the rationale and actual procedure

of which were described in Sections 111.8 and V.3 . If the Old Test

has a constant amount of test information, as is the case with our

original Old Test, the reader may simply replace T by 0 . Let

WIT( ) denote the conditional density function of T , given its

maximum likelihood estimate, • . It should be recalled that T

is obtained from 6 through the same polynomial transformation

which was introduced in Section V.3 . We can write for the first I
through fourth conditional moments of T , given T^

I2.d
(5.20) E(T +C log g6)

2[,+-2 -2 d2  lg
(5.21) Var.(¶Ir)-C.2[l+ C-z log g(^)]

(5.22) E[{¶-E(¶ji)1 3 I1u] C TT 3 log g(T)] .

and

d 

4

..... j----
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(5.23 -4 2d2
(5.23) E[Tr-E(T)}4ji] C D3 + 6C-2{ 2 log g(^)

-4 d2  d4

3C-4{di 2 log g(^))2 + C-4{ log g(•)}]

where C is the target constant for the square root of the test

information function, [I*(T)]l/2 . Substituting (5.21), (5.22)

and (5.23) for v2 P 13 and v4 in (4.2) and (4.3), we obtain

the two indices, 81 and 82 , and, from these two values and (4.1),

Pearson's criterion K is obtained. These indices, which can be

computed for any fixed value of T , will indicate which type of

distribution of Pearson's system (Elderton and Johnson, 1969;

Johnson and Kotz, 1970) we should turn to for *(T) . A brief

summary of this procedure can be described as follows.

Type I (Beta distribution, general) : K<O

Type II (Beta distribution, symmetric) : KO, 8O, Y 2<3

Type III (gamma distribution) : K-C, 282-381 -6-0

Type IV : O<K<l

Type V : KI U
Type VI : K>1
Type VII (including t-distribution) : K-0, $1 -0, 83 >3
Normal distribution : K=0, 8a 00 82 -3

The estimated conditional density function, O(Tr!) , thus

approximated, has an important role in all of our four different

approaches, which will be introduced in Sections V.10 through V.14

It is a characteristic of the Pearson System Method that we
use all of the first four conditional moments of T , given T
Using these four conditional moments, the indices, 81 , 8 and. K ,

are obtained, and they direct us to one of the Pearson System

distributions. For example, when we approximate the density function

g(8) , which is based upon the original Old Test, for the total

group of examinees, in Degree 3 Case, *(0j1) turned out to be of

Type I for 318 values of e , of the normal distribution for 181

values of § , and for the other one case it is undefined because
s!I

A••• •• • •;•. • ::•";•.I •• • ,Z , 'if, ••L . :`:!.•••••`< h ̀ .: : :. : .:S `:; ,••,• ::,..I•,•,Z :,.:.• .5•,.' , :'I.• .' ,'
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of the negative value for the estimated fourth conditional moment;

in Degree 4 Case, $(oj§) proved to be of Type I for 432 values of

o , of Type II for 54 values of 8 , undefined for 13 values of^S S

8 because of the negative values for the estimated second and/or
s

fourth conditional moments, and for the other one case the estimated

density., g ) , is negative and, therefore, it is undefined. If,

for instance, ;(OlO) -is of Type I, then the four parameters of the

Beta distribution will be estimated from the four conditional
moments of 6 , given 6 ,and so on.

S

In comparison to the other two methods, i.e., Two-Parameter
Beta Method and Normal Approach Method, which will be introduced in

Section V.8 and V.9 , we can say Pearson System Method is
theoretically sound. It will provide us with varietie3 of

unrestricted curves for the estimated conditional density functions,

ý(TJý) , which will enable us to approximate the true conditional

density functions well. Its disadvantage lies in the fact that the

use of higher conditional moments, like the fourth moment, may lead

us to inaccuracy of estimation, as is implied in the two examples

given in the preceding paragraph. If this is the case, we may use

either Two-Parameter Beta Method or Normal Approach Method, which

requires only the first two conditional moments.

(V.8) Two-Parameter Beta Method

Beta distribution is known for its abundance of different

shapes in its density function. They include unimodal, symmetric

curves, unimodal, asymmetric curves, J-shape curves, U-shape

curves, and linear functions. For this reason, the distribution

has been used by many researchers in approximating empirical
distributions. In the Pearson System Method', which was introduced

in the preceding section, Beta distribution is used as two of the

Pearson System distributions, i.e., Types I and II. When we

approximate the conditional density, $QTI') , by a Beta density

function, we can write

(5.24) ^B ~ ]- al)pI (b•-z) ý q-l q (b -&ý)- (pA+qj-l).•i(5.24) $(tV•) - tB(p•,q•)I ta)t(~.,T(Aa) t

!,I
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where pý , q. aý and bA arc the four parameters of the Beta

distribution, and B(p^,qý) is the Beta function which is given by i

fjp P-1 qA-1
(5.25) B(pj,qý) Ju. (1-u) du

These four parameters are estimated from the first four conditional

moments of T , given T , and the resultant 1 and '2 (cf.

Section IV.l). We can write 2

i'i~~~~ 1° ^1r2) -~/2]
(5.26) q, _ (r/2)[l ± [$3.) 1 (r+2) + 16(r+l)] -

(5.27) b^- a. - {E[(' - E[TL?])2I•]}l/2{al(r+2) 2 + 16(r+l)} /2 1

(5.28) E[T - (-
T

and

(5.29) ý E[TI•] + , (b -a])/r

II
I• (5.30) r 6 61) (6+3812 .

T T

/,distribution becomes Pearson's Type II distribution, and we have

A A(5.31) Pý qz" r/2

and, otherwise, it is Pearson's Type I distribution.

When the two of the four parameters ok the Beta distribution, I
a- and b5 , which are the lower and the upper endpoints of theTt

interval for which the density function assumes positive values,

are a priori given, the estimation of the other two parameters is

much more simplified. In fact, we only need the first two
conditional moments of T , given T , in addition to the set
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values for a- and b; * We have*T I
(5.32) 2 H-1  - M1  ,

and

(5.33) q - M1  -)2 1 - (1-MI)

where M, and M2  are defined by
I, (.34) gI- [E(4t•)-aA](b-.-a.) -1

(5.34) 141 T

and

,k (5.35) M2 Var.(-rjt) (b .-a .) .

In the Two-Parameter Beta Method, we adopt a priori set

parameters, a^. and b. , and estimate the other two parameters,

Sand qý , accordingly, and use them in (5.24) for the

estimated conditional density, $(TJ) . It has an advantage over

the Pearson System Method in the sense that we only need the first

two conditional moments of T , given T , instead of four, and

yet we can make use of the abundance of different shapes of the

Beta density function. The biggest problem is how to select

suitable values for a- and b^ for each fixed value of t . In

the present study, these values are chosen relatively arbitrarily,

and we adopted

(5.36) a.- -2.55C-

lb~ + 2.55C-l

where C is the target constant square root of the. test

information function, "I*(¶)] . Actually, this method was used

only for the original Old Test, so C_ equals (a 0.215)

-. -- -.

• ..' 5'
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Although all the results obtained in the present study turned

out to be as good as they can be, which will be introduced In

later sections, the selection of suitable values for a- and b-

is yet to be investigated in future, to make Two-Parameter Beta

Method theoretically sounder and more useful.

(V.9) Normal Approach Method

A simple, straightforward method of approximating the

conditional density function, W(xIT) , using the only first two

conditional moments of T , given T , may be the approximation by

a normal density function. We can write

•, [2wU2~1-/2(22 -
(5.37) $(^Ji) - F exp[-(-Vi) 2 (2 ]

where

(5.38) - E[TITl

and

(5.39) ar.T

An advantage of this method over the Pearson System Method

is that we need only the first two conditional moments, and one

over the Two-Parameter Beta Method is that we do not need any a

priori set parameters. A disadvantage is obviously that it
restricts the estimated conditional moment to be a tmimodal,

symmetric function, regardless of its true shape. In spite of this

restriction, however, Normal Approach Method worked very well both in

combination with the Bivariate P.D.F. Approach and with the

Conditional P.D.F. Approach, the results of which we shall see in

succeeding sections.

(V.10) Bivariate P.D.F. Approach

As was introduced in Section V.5, in the Normal Approximation

Method, we approximate the bivariate distribution of T and T ,

7°77-1

___________________ #-L



-65- V-20

or 8 and a if the square root of the test information function

of our Old Test is constant, by a bivariate normal distribution,

for each subpopulation of examinees who share the same item score

to item h . Our results turned out to be quite successful.

Figure 5-10-1 presents the theoretical regression of 0 on

8 which is based upon the original Old Test, and the intervals of

the standard error above and below this re "ession, by dotted lines,

(CD 0 3CD .0

WO. ITEM 1 2.0 ITEM I

to to

•,, z ~-tO -t
u1 toL

S--W." -2.o

)•,'.4,0-3.0-2.0 -t 0.0t 2.0 3.0 4.0 .4,0-3.0 -2.0-t 0.01.0 2.0 3.04.0

!,LATENT TRAIT * LATENT TRAIT 0
* •/FIGURE 5•10-i

i•' ~Comparison of the Theoretical Regression for Ability 8 on Its Maximum Likelihood :
I ~Estimate 0 (Dotted Line) with t.he 3eet Pitted Line of Ability 8 , on 6 (Dashod

. ~Line), for Each Item Score Group of Item 1 . Also the Standard Errors of Estimation ,
il Are Shown~ on Each Side of the Regression, and of the lest Fitted Line.

for each of the success and the failure groups for item 1 . In the

same figure also presented by dashed lines are the empirical linear |

regression of 8 on 8 , with the intervals of the empirical

I;standard error above and below the linear regression, which wr

'. ~introduced in Section V.5 . We can see in this figure that for the"
"Isuccess group these two sets of curves are almost identilcal for

|i•most of the meaningful range of e while the discrepancies are

•,substantial for the failure gru.This example of the failurego

_ _M _2_
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group for item 1 is the only extreme case, and, in fact, thirteen

out of the remaining eighteen cases provided us with similar'results as

the one for the success group for item 1 , four cases show slight

discrepancies, and the other one case lies somewhere between the

two examples in Figure 5-10-1 in diversion.

The results illustrated in Figure 5-10-1 suggest that we may

need to investigate some other approach than the approximation by

the bivariate normal distribution to the joint distribution of T

and ' This can be done by making use of the marginal density

functions of T and the conditional density functions of T

given T , for the separate subpopulation of examinees.
ALet g (r) denote the proportion of the density function

Xh

of the maximum likelihood estimate T for the subpopulation of the

examinees who share the same item score, xh (0,i,...,mh) , and

* (Tj') and • (T,^) be the corresponding conditional density

of T , given T , and the proportion of the bivariate density of

T and T respectively. We can write

*1

where

(5.41) g 1T gZ ( ;)

t)' and

mh~x

(5.42) (,)- h(T, A)

To obtain the estimate of the proportion of the bivariate

density, • (T,t) , we classify the set of N ti's into (Vl)
xhi(%l

**..
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item score categories, depending upon the item score xh (0,1,... ,mh)

the examinee i obtained for a new test item h , for which the

operating characteristics are to be estimated. The method of

moments is applied for each of these. (mh+l) subsets of T , and the

shared density function, g ,(T)', is estimated for each subgroup.

The conditional moments of t , given t , are also obtained for
separate subgroups, using the formulas (5.20) through (5.23) , with

the replacement of g(r) by (N/N ) g () , where N denotes
xh "h Xh

the number of examinees whose item scores to item h are h

Based on these estimated conditional moments, the parameters of a

specific density function, which is adopted for 0 iTit) , are

obtained for each subgroup xh . The choice of *h(T¶I) depends

upon which of the three methods, i.e., Normal Approach Method,

Two-Parameter Beta Method and Pearson-System Met.hod, is taken. The
bivariate density function of T and T is obtained from (5.40)

for each of the (VI+) subgroups. Then the estimated operattng

characterlstic, p (0) [- P* (T(O))] , is given by
N xh

(5.43) P(0)- Z , )dx [ f•)d]-I ,

Xh - .mf

This approach was applied to our data (cf. Section 111.3) in

combination with the Normal Approach Method (cf. Section V.9) for

Degree 3, 4 and 5 Cases. We used the five hundred maximum likelihood

estimates, 0 which were based upon the original Old Test. The
polynomials of degrees 3, 4 and 5 approximating g (•) for each of

the two subpopulations, i.e., the success and the failure groups,

are illustrated for h - 6 in Section V.6 as Figure 5-6-1.

Figure 5-10-2 presents the resultant estimated ebilh~y

distributions in Degree 3 (dotted curve), 4 (short, dashed curve)

and 5 (long, dashed curve), together with the theoretical density

(solid curve) and the frequency distribution of e (histogram with

'.- . . ....... i
L. .<.C
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02 ITEM 6, FAILURE GROUP

A0 .40 -0 -40 00 W0 •.0 &
LATENT TRAIT 0

02

A40 4-U -. -1. 0.0 1.0 .0 310 4

LATENT TRAIT 0

FIGURE 5-10-2

Zatimsted Proportion& of the Density Function of Ability 0 in Degree 3 (Dotted

Curve), 4 (Short, Dashed Curve) end 5 (Long, Dashed Curve) Case of the livari•te

V.D.F. Approach with the Normal Approach Method, for Each of the Success and I
Failure Subpopulations. Actual Frequencies (Solid Line with Dia•onds) and the

Theoretical Proportion of the Density Function (Solid Curve) Are Also Drawn.

solid diamonds), for each of the success and failure groups. We

can see in this figure that, except for the lower end of 6 for

the failure group and the upper end of 0 for the success group,

these three curves of Degree 3, 4 and 5 Cases are very close to the

theoretical curves. The results for the other nine binary test items

are similar to this example. In some cases the fit is best in Degree

5 Case and worst in Degree 3 Case, but this order is not true with

all the cases. In most cases, the resv,.tant' three curves are close

to one another, as we can see in Figure 5-10-2.

Figure 5-10-3 presents the resultant three estimated item !

characteristic functions of Degree 3, 4, and 5 Cases for item 6,

which were obtained from (5.43) with xh- 1 and mh= 2 , by dotted,

short dashed emd long dashed curves, respectively. We can see in

"N, " '
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this figure that all these results are close to the theoretical item

characteristic function, which is also shown in the figure by a solid

curve, and are much closer than the frequency ratios of 6 for the

correct answer, which are shown by a solid line with diamonds in the

figure. If we compare these three estimated item characteristic

functions with one another, we can say that the result of Degree 3

Case is not as good as the other two. This is not a general

tendency, however. For most of the other nine test items, the

resultant estimated item characteristic functions of Degree 3 Case

are much closer to the corresponding theoretical item characte~ristic

functions, and, in fact, for item 7 it shows the best fit among the

three. "TM

t to

,l'A I s TEM 6

ii

' 0.2 '

LATENT TRAIT 0
FIGURE 5-10-3

Estimated Item Characteriotic Punctione of tem 6 for Degree 3 (Dotted Curve), 4
(Short. Dashed Cutve) and 5 (Long, Dashed Curve) Cases of the Bivariato P.D.F.
Approach with the Normal Approach Mathod, Together with the Theoretical Itrn
Characterietic Function (Solid Curve) and the Actual Frequency Ratios (Solid

Line with Diamonds).

(V.11) Histogram Ratio Approach

In this approach, and also in the Curve Fitting Approach and

the Conditional P.D.F. Approach, which will be introduced in the

following two sections, we make use of the estimated conditional

density function of T , which is evaluated for the maximum
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likelihood estimate, T , of each individual examinee a . This

is the difference of these three approaches from the Bivariate

P.D.F. Approach, in which W(rj•) is used for approximating the

bivariate density function, F(T,T^) , as we have observed in the

preceding section.

Using the Monte Carlo method, we have the computer produce

a specified number of T following the estimated conditional
density function, T(t ) , for each value of T . Let denote

a IS

the values of T thus produced, as we did In the Normal

Approximation Method, and v be the number of i 's produced for

each T ' The resultant set of r 's are classified into (m%+l)s

categories, depending upon the item score Xh (0,l'"'.mh) which

the examinee s obtained for item h Then each • is

transformed to , by means of

(5.44) , -l[T(e) • n
When T( is given by the polynomial shown as (5.14), this process

can easily be performed by the Newton-Raphson Method.

We divide the interval of 6 of our interest into

subintervals of equal width. Let t denote the subinterval, 8t

be the midpoint of the subinterval t , and H (8bt) denote the

frequency of 6 's , which belong to the item score xh and the

subinterval t . We have for the estimated operating characteristic
of the item score xh

(5.45) @Xh(et) H Oxh•t[ E H (Oct)]- II ,xh=0'l""''mh

This approach was applied to the set of five hundred maximum

likelihood estimates 6 , which were obtained upon the original5 
I

Old Test, in combination with the Two-Parameter Beta Method for

approximating the conditional density function, 0(01i) . The

number of hypothetical examinees actually used in Degree 4 Case is

.} ......
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493 (cf. Section V.6), while in Degree 3 Case the total 500

examinees were used. In both cases, we adopted v - 5 , and 0.25

for the subinterval width. Figure 5-11-1 presents the resultant

estimated item characteristic functions of item 6 for Degree 3 Case

by triangles, and for Degree 4 Case by squares, respectively.

ITEM 6
z U

z0.6
rL

W itOA

i • I LATtENT TRAITS i

" ! ~FIGURE 5-11-1

Estimated Item Charactertstic Functions of Itrm 6 for Dlrle. 3 (?rian~lle)
and 4 (SqUares) Cases of the Uisto,.ras ka~tto Approach and Those for eraee
3-3 (Long, Dashed Curve) and 3-4 (Short, Dashed Curve) Cases• of the Curve i

Fitting Approach, with the Two-Paremeter leta Method.

We can see that the two sets of estimates are fai'rly close to the

theoretical item characteristic function of item 6, which is drawn
by a solid curve in Figure 5-i1-1I. It is expected that the fitness j
will be even better if we increase v , and decrease the subinterval

width. Similar results were obtained for each of the other nine[binary test items.

.An advantage of the Histogram Ratio Approacti over the others

lies in i'ts simplicity and straightforw•ardness. in order to obtain

a smooth curve for the estimated operating characteristic, it is

advisable to use a fairly large number for V , and a small width

for the subinterval, t , of B .

13

.I

It:,,..,

'2D - ( o I D 3.. . . . . . . . . . . . .. . . . . . . . . ..0'~~
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(V.12) Curve Fitting Approach

This approach follows the same process as the Histogram Ratio

Approach until we obtain V N 0 's , which are divided into (mh+1)

subsets -of item scores xh for item h . Then for each subset of
I 's a polynomial of a specified degree is fitted by the method

of moments. Let nXh (8) denote such a polynomial fitted for the
x[

8 's of the subset xh . The estimated operating characteristic

of the item score Y1 is given by

(5.46) (0) ( n (0)V'
Sxh 'h J-0

This approach was applied to the same set of 8 'a as we

obtained for the Histogram Ratio Approach in the preceding section.

Both polynomials of degree 3 and degree 4 were fitted to the

resultant two subsets of e 's , which were obtained in each of
Degree 3 and Degree 4 Cases. We shall call these four cases

Degree 3-3, 3-4, 4-3 and 4-4 Cases, with the second number indicating

the degree of the polynomials fitted to the subsets of 6 's . An
example of the curve fitting for Degree 3-3 and 3-4 Cases for item

4 was given in Section IV.l as Figure 4-1-3.

The resultant estimated item characteristic function for

* the preceding section by long and short dashes, respectively,

together with the results obtained by the Histogram Ratio Approach.

Figure 5-12-1 presents the corresponding results for Degree 4-3 and

4-4 Cases by long and short dashes, respectively. We can sec that

jI. all of these four results are very close to the theoretical item I
characteristic function, except for both ends of the curves.

In this example of item 6, we can say the curve for Degree 3-4 fits I
the best to the theoretical item characteristic function. We

cannot generalize this to the other items, however, and there is no

systematic tendencies as to which of the four cases provides us

"with best fitting curves.

* I
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ITEM 6

z On

0A.

s0.4-

QO2

LATENT TRAIT 0

FIGURE 5-12-1

Estimated Itas Characteristic Punctloos of Item 6 for Degree 3 (Triangles)
and 4 (Squares) Cases of the Histogram Ratio Approach and Those for Degree
4-3 (Long, Dashed Curve) and 4-4 (Short, Dashed Curve) Cases of the Curve

Fitting Approach, vith the Tvo-Parameter Data Method.

(V.13) Conditional P.D.F. Approach

In this approach, we use the whole approximation to the

conditional density function, O(r ) . In the Simple Sum
Procedure, we have for the operating characteristic of the item

score xh

h s

In the present study, this approach was frequently used. Among

r others, it was used for the cormparison of the results obtained
r upon several different Old Tests, which will be introduced in

il Chapter 6.

•/I t should be otdthat we can write for the conditional

/ ~density of t , given Ts

xh .... P
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• ~~(5.48) •(Is ,*(T^sIT) f*(T) [ ( ITsl) f*(T) dTl-

where ý(T IT) is the conditional density of ,. i given T , and

f*(T) is the marginal density of x . From our simulated data,

we can obtain this theoretical density function, by using n(T,C-)

for p(t IT) , where C is the target square root of the test

information function, [I*() /2, and

(5.49) f*(T) f(e)j- f(e) C I E-
~T f()C Zck 6S~k-0

!" 7
02t ek]l-iI k-0.2C[ aek for T(-2.5) < T < T(2.5)S{ ~k-0

/.I -0 otherwise. 4
We can replace 4(rt in (5.47) by O(rj•s) thus obtained, and

the resultant function is called the criterion operating

characteristic of item score xh . This function is the limiting

case that we can possibly attain by adopting the Simple Sum

Procedure of the Conditional P.D.F. Approach upon a given set of data.

Figures 5-13-1 through 5-13-3 present the three sets of

estimated item characteristic functions of item 6, obtained by the

Conditional P.D.F. Approach, in comparison with the theoretical

item characteristic function, which is drawn by a thick, solid curve,

and the frequency ralios of the correct answer, which are shown by

the combination of long dashes and dots. These resultant estimated

operating characteristics are based. upon the Conditional P.D.F.

Approach combined with the Two-Parameter Beta Method, Normal
•! ~ ~Approach Method and Pearson System Method, respectively. In each "i

figure, the result obtained in Degree 3 Case is plotted by long

dashes, and the one obtained in Degree 4 Case is drawn by short,

thick dashes, respectively. There is the fifth curve, plotted by
a thin, solid curve in each figure, i.e., the criterion item

characteristic function of item 6. It is hard tosingleit out, l

LwI!
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r 1 0

0 1 TEM 6

z a

O-

*O 4 FIGURE 5-13-1 2A 3.0

Estimated Xta Characteristic Functions Obtained by the ConditionAl P.D.Approach with the Three-Parowtor Betst Method, im D~egrao 3 (lons Dashes)
and 4 (.Short, Thick Dashes) Cases, in Couparison with the Criterion ItemCharacteristic Function (Thin, Solid Curve), the Frequency Ratio& of the

Correct Answer (Lr ng Dasheand Dote), and the Theoretical Ite
Characteristic Function (Thick, Solid Curve).

0, I
SIk~i ITEM 6

OA

42
zO

1,)0

6 .• 4 0 F I G U R E 5 - 1 3 - 2 2 D 3 0a]
Result of the Normal Approach M4ethod, in Comparison with the Other Three.

0 ITEM 6

z

Ioh

,?,

.0 3 40 FIGURE 5-13-3 2
Result of the Pearson Ryatem Method, in Comparison with the Other Three.

4
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however, because in each figure the three curves, i.e., the results
of Degree 3 and 4 Cases and the criterion item characteristic
function, are practically indistinguishable. This result is not
unique for item 6, which we have chosen as an example more or less
arbitrarily. In fact, for the interval of 0 , (-2.2, 2.2) , the
three curves are practically identical for each of the other
nine binary test items, although outside of this interval of e
there are some discrepancies.

The above results indicate the high success of using either
one of the three methods, i.e., Two-Parameter Beta Method, Normal
Approach Method and Pearson System Method, in approximating the
conditional density function, *(rJTs) . We have investigated the

5fitness of these curves further, some results of which are
illustrated in Figures 5-13-4 through 5-13-6.

Figure 5-13-4 presents the regression, E[616] , of ability
Son its maximum likelihood estimate e , which is based upon

ao

£0

.20

-I0

-20

FIGURE 5-13-4IRegreuslon of Ability 0 on Its Maxim Likelihood Estbaeta 5
Based Upon the Origiual Old Test,

--li'_ IL
I.4
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the original Old Test, with the intervals of the standard error,

where *(tjt) is defined by (5.48), with the replacement of t by
e , and • by 0 . In the same figure, also presented by

[a.e8 12 oeahside, by dots. These values were obtained

5
dashed and solid lines are the corresponding estimates in Degree3i'i and 4 Cases. We can see that these three sets of curves are

Ii practically identical for the interval of 0 , (-2.2, 2.0) , and•i I then divert from one another outside of this interval. This result

Sproves a high accuracy in the estimation of the first and the! second conditional moments of 0 , given • , which was done by

;: (3.22) and (3.23), using the polynomial obtained by the method ofS~moments as the estimated density function, g(O) , in both Degree
3 and 4 Cases. The differences between the two cases in the

diversion from the true regression outside of the interval of e ,(-2.2, 2.0) , are due to the differences between the two

polynomials around these two areas, which are shown in Figure 4-1-2.

From the result shown in Figure 5-13-4, we can expect that
Lhe fitness of *(Of§s) Co 43(e0I) should be better for the '
interval of 0 , (-2.2, 2.0) , than for the range of e outside

of this interval. Figures 5-13-5 and 5-w3--6 present two examples

of the fitnesses of the estimated conditional density functions tothe true density function, t(esa) .These two sets of results
are for s 50 and s - 500 , whose maximum likelihood estimates, i g
n 4 Care -0.0066 and 2.6346 , respectively. In both figures,

the theoretical density, fr(0Ith) , is drawn by a solid curve, and
the estimated density functions, •(e O~) , obtained by the Normal

3 n ae.Tedfeecsbtentetocssi h
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i .... i

[ ' 210 0. .0 05 . -. -05..0.5 %

I2J 2D

300

-I

-1.0 -0.5 0.0 0.5 1.0 10 -0.5 0.0 0.5 1.0

LATENT T4AIT 0 LATENT TRAIT S

FIGURE 5-13-5

Conditional Density of 8 , Given 1 (Solid Curve) end It. Estiuates by the

Normal Approach Method (Dotted Curve) and by the TWo-Parmeter Beta Method

(Long Dashed Curve). for Degree 3 Cae (Left) and Degree 4 Caes (Right),
Based upon the Origiual Old Test. 6 - *0S " -0.0066

"Approach Method and the Two-Parameter Beta Method, are plotted by

short and long dashes, respectively, in each of the Degree 3 and 4

Cases. In Figure 5-13-5, we can see that $(Os) , which is ^

obtained by the Normal Approach Method, is practically identical

with the theoretical density function, while the oae obtained by

the Two-Parameter Beta Method is somewhat different, in each of

Degree 3 and 4 Cases. In this example, Pearson System Method

directs us to the normal distribution in Degree 3 Case, and to the

Type II Beta distribution in Degree 4 Case. The normal density

curve in the left hand side graph of Figure 5-13-5, therefore, is

also the result obtained by the Pearson System Method, and the one

in the right hand side graph is practically identical with the'.one

obtained by the Pearson System Method (6 " 2.999) .. We can also

see in Figure 5-13-5 that the two sets of results obtained for

"I~

-- - -- -
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&2 12

IL

1.5 2.0 2.5 3.0

LATENT TRAIT 0 LATENT TRAIT 0

FIGURE 5-13-6

Conditional Denlity of 0 * Given I (Solid Curve) and Its Istimates by the
Normal Approach Method (Dotted Curve) and by the Two-Parmater Ulta MethodI (Longl "shed Curve) , for Degree 3 Case (Left) and Degree 4 Cueot (Rgilht),

aoed upon the Original Old Test. 6 - 0500 - 2.6346

Degree 3 and 4 Cases are very close to each other.

In contrast to this, Figure 5-13-6 shows lower degrees of
fitness of $018 ) to its theoretical counterpart, F(816s) , in

5 5

both Degree 3 and 4 Cases. The departure from the theoretical

density function is greatex for Degree 3 Case in both results

"obtained by the Two-Parameter Beta Method and Normal Approach

Method, which is anticipated from the greater diversion of the

estimated regression of 6 on 0 from the true regression in A

Degree 3 Case, as we have seen in Figure 5-i3-4. Pearson System

Method directs us to the Type I Beta distribution (K - -0.010,

1 - 0.000, B2 - 2.990) in Degree 3 Case, and the distribution
is andef ined in Degree 4 Case.

We have sampled 42 examinees out of 493, and observed the

fitnesses of the estimated density functions to the true ones (cf.

' - *A
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RR-78-2). As is expected from Figure 5-13-4, in most cases the

results turned out to be similar to the one for s - 50 , which we

have seen in Figure 5-13-5, and in a few cases in which e8 lies

outside of the interval, (-2.2, 2.0) , the results were similar to

K . the one for s - 500 , which we have observed in Figure 5-13-6. -

Weighted Sum Procedure is an expansion of the Simple Sum

Procedure, in which the estimated operating characteristic, Ph(0),
Xh

of the item response Xh can be written as

N A -
(5.52) P w(, ) _(¶jr)[ T w(s)$(TIs)]-

Xh saX s-1

where w(&s) is an appropriate weight assigned to the maximum

likelihood estimate T for the individual examinees. Simple
s

Sum Procedure can be considered, therefore, as a special case of

the Weighted Sum Procedure, in which w(Ts) 1 1 for all the

individual examinees.

Figure 5-13-7 presents the estimated density functions of

ability 6 , which is divided into two portions for the success

and failure subpopulations for item 6, respectively, as the results

of the Weighted Sum Procedure of the Conditional P.D.F. Approach,

which is combined with the Two-Parameter Beta Method. These

[i results were obtained upon the original Old Test, using the area

under the curve of ^(6) for the subinterval of 0 which is

taken from the midway between each s and the lower adjacent

value of 8 and ends with the midpoint between 6 and the upper

adjacent value of es . The result of Degree 3 Case is plotted by

dots and the one obtained by Degree 4 Case is drawn by dashes, in

each of the two graphs of Figure 5-13-7. In this figure, the

theoretical portions of the density of ability 0 are drawn by

solid curves, the actual frequencies of 0 by solid lines with

' I
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ITEM 6, FAILURE

0M2

z

-40 30 -2 -10 O 1.0 2.0 3.0 4

02 ITEM 6, SUCCESS

FIGURE 5-13-7

d tsiatod Density Functions of Ability 0 Divided Into Two Portlons for the Success',. and the Fallure Subpopulations for Item 6 , Obtained by the Weighted Sun Procedure

of the Conditional P.D.F. Approach vith the Two-Parameter Beta Method, in Degree 3
ch(aorted Curves) fnd 4 (Dashed Curves) Cases , in Cocpar•son ith the Theorwtical' ~Portions of the Density Function (Solid Curves) . the Actual Frequencies of' e 6

:• (Solid Lines vith Diamonds),. and the Por.tions for the Criterion Itm Characteristit
• Function In the Staple Sun Procedure (Solid Curves vith Crosses).

ri: diamonda, and the functions which are the basis of tho- criterion item

characteristic function in the Simple Sum Procedure are shown by

solid curves with crosses, respectively. We can see in this result
that the estimated ability distributions are more deviated from the '

true ability distributions in Degree 3 Case, in comparison with

those of Degree 4 Case. This is not only true with item 6 but is

common among the results obtained for the other nine binary testitems, and also among those obtained by using the Pearson System

Method instead of the 'wo-Parameter Beta Method. This diversion

is due to the fact that we used the areas under the estimated
density function, 0(6) , as the weight, w(es) , and the

discrepancies of g(6) from the true density function in Degree 3
Case are greater than the one in Degree 4 Case, as we have seen in

14
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Figure 4-1-2.

Figures 5-13-8 and 5-13-9 present the resultant estimated

item characteristic functions of item 6, in Degree 3 Case by dotted

curves and in Degree 4 Case by long, dashed curves, which were

*: obtained by the Pearson System Method and the Two-Parameter Beta

* Method, respectively. In these figures, also presented are the

theoretical item characteristic function of item 6, the proportions

correct of 0 , and the criterion item characteristic function

obtained by the Simple Sum Procedure, by solid curves, solid lines

with liamonds, and solid curves with crosses, respectively. We

can see in these two figures that the results obtained in Degree 3

and 4 Cases are practically identical, in spite of the differences

between the two sets of estimated portions of the density function

of 6 , as we have seen in Figure 5-13-7. This turned out to be

ITEM6
~0.8

COLA

LATENT TAIT S

FIGURE 5-13-8

estimated It"m Characteristic 7mctions of Itm 6 In Degree 3 (Dotted Curve) and 4
(Long, Dashed Curvo) Cae&&, Obtained by the Veighted Sum Proceadure of the Comditional
P.D,F. Approach with the Pearson System Method. in Compariton with the Theoretical
Item Characteristle, Function (Solid Curve>), the Proquency Ratios of B (Solid Line
with Diamonds), and the Critaron Item Characteristic Function in the S-inpla Sum

Procedure (Solid Curve with Crosses).

.......... 7
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J 0.5 1ITEM 6

040

-40 4.0 -40 -0 0.0 10 20 30 4,0
LATINT TRAIT 0

FIGURE 5-13-9

stimsatoe, tse Characteristic Punctions of Item 6 in Degree 3 (Dotted Curve) and 4
(Long, Dashed Curve) Coaes, Obtained by the Weighted But ?rocedo'ra of the Conditional
Y.DY. Approach with the Two-Parasator Setas Mthod, in Comparison vith the Theoretical
Ite* Characteristit Punction (Solid Curve), the Vrequency latios of 6 (Solid Line
with Diemonds). and the Criterion It*% Characteristic Yunction in the Simple SUN

procedure (Solid Curve with Crosses).

true with every binary test item for the interval of ,

(-2.2, 2.2) , in, both results obtained by the P.earr.on System'Method

and by the Two-Parameter Beta Method. We also notice that these two

sets of results obtained by the two different methods are very

close to each other for this range of e , and, again, this is

true with all the other nine binary test items. There are some

discrepancies between these results and the criterion item

chlaracteristic function obtained by the Simple Sum Procedure,
howeve,.. Since the estimated item characteristic function

obtained by the Simple Sum Procedure with either one of the three
1 methods , ,. k., Pearson System Method, Two-Parameter Beta Method

and the Normal Approach Method, is practically identical with the

corresponding criterion item characteristic functions for each of
the ten binary test items, as we have observed earlier in this

I an theApprachMethd, Bta Mt7o
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section, the above discrepancies also exist between the set of
estimated item characteristic functions obtained by the Weighted

Sum Procedure and the one obtained by the Simple Sum Procedure.

In this example of item 6, we can see that the results obtained by

the Simple Sum Procedure fit better to the true item characteristic

function, than those obtained by the Weighted Sum Procedure. This

fact cannot be generalized to all the other nine binary test items,

however. For instance, for item 10, the results indicate that this

order is reversed.

If we replace $(Tji ) in (5.52), by its theoretical
s

counterpart, W(tITZ8) , which is given by (5.48), we obtain a kind

of criterion operating characteristic in the Weighted Sum Procedure.

Since we still use the weight obtained from g(6) in our example,

we shall call it pseudo-crIterion item characteristic function.

Actually, we can obtain more than one such functions, depending i
upon the approximations used for g(•) . We obtained three pseudo-

criterion item characteristic functions for each of the ten binary

test items, using the three polynomials of degrees 3, 4 and 5, which

were obtained by the method of moments and are illusttated in

Figure 4-1-2. These three pseudo-criterion item characteristic functions

turned out to be very close to the two estimated item characteristic

functions of Degree 3 and 4 Cases for each of the ten binary test j

items, the result which supports the usefulness of the three
S" different methods of approximating the conditional density, ý(.rt •

Proportioned Sum Procedure has a somewhat different rationale

from those for the other two procedures. Let p(sexh) be the

probability with which the examinee s belongs to the subpopulation

xh . We have for the estimated operating characteristics, P^(8) , (
xxh

of the item response xh to item h

N N
(5.53) ý 9 (sexh) &ýT1Q[ (ts)f

II-- s

x. B
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where p(sexh) is the estimate of the probability p(sex which

etmosatisfies

I, ~ Figure 5-13-10 presents the four different estimates of

Sp(s~xn) for item 6, which were used in the present study. Our

basic data are, again, the set of five hundred maximum likelihood

estimates obtained upon the original Old Test. These four

estimates of p(sexh) are the proportions of the examinees who

belong to the subpopulation xh within a mre or less arbitrarily

chosen interval of 6 . The first and second estimates, which ar1
A- plotted by solid triangles and crosses, respectively, in

1.0
S• ITEM 6

i0.

0-A8

,2 0.6
0

C-A

LATENT T•UMT 6

FIGURE 5-13-10
Four Different Estimates of p(sixh-l) for Item 6 , i..., '.eProWporti os of the

Examinees Who Answered Coorectly to Item 6 within the Interval 6 to (Solid

Triangles), Those within the Interval 6 i 2o (Crosses), and the Correspondtn
Results for Which the 61 Equally Spaced Values of & Uera Used Instead of the

500 Values of 6 (Dote and Dashes, Respectively).

- - - - - - - - - - - - - -
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Figure 5-13-10, are the proportions of the examinees who belong to

the subpopulation xh-i within the intervals, e ± a and 6 ± 2a

respectively, where a - 0.215 . The third and fourth ones, which

are drawn by dots and dashes, respectively, are the same as the first

two, but are assigned to the sixty-one equally spaced values of0

instead of the five hundred observations, 8 'a . We notice that

these proportions themselves can be crude estimtes of the operating

characteristic of xh , if we correct the scale of a using the

method suggested in Section V.2 . With ou• data, the ratio

of the standard deviation of e to that of 0 is only 1.011

(cf. RP-78-5) and the regression of 0 on 0 is approximately

linear for the interval of 0 , (-2.2. 2.0) (cf. Figure 5-13-4).

For these reasons, the item characteristic function of itam 6 is

drawn without correction in Figure 5-13-10, for a rough comparison.

Figures 5-13-11 and 5-13-12 present the resultant eastlmated

item characteristic functions of item 6 obtained by the Proportioned

Sum Procedure which is combined with the Pearson System etbod and -

the Two-Parameter Beta Method, respectively, using the first two

p,"(scx,) Is , for Degree 3 and 4 Cases. In these figures, the .

results obtained by using the first and second p(sexh-1) 's for

Degree 3 Case are plotted by dots and medium dashes, and those for

Degree 4 Case are drawn by short and long dashes, respectively,

together with the theoretical item characteristic function of item H
6, the proportions correct of 0 , and the criterion item

characteristic function obtained by the Simple Sum Procedure, which

are drawn by solid curves, lines with diamonds, and curves with

crosses, respectively. We can see in each of these two figures ,

that the four results are very close to each other, and also to the

criterion item characteristic function obtained by the Simple Sum
Procedure, for the interval of 6 , (-2.5, 2.5) . This is a common
tendency among all the ten binary test items, although for some

items they are not as close as those for item 6. It is also noted

that these two sets of results obtained by the Pearson System

Method and by the Two-Parameter Beta Method are very close to each I

1'

I,
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0.8 ITEM 6

2'0.2
0

-40 .°0 -0 -t 0. 0 20 &0

LATENT TRAIT 0

FIGURE 5-13-11

xstimted Item Characteristic Fmuctions of Item 6 Obtained by the Proportioned Sum
Procedure of the Conditional P.D.7. Approach with the Pearbon System Method % by
Using the Proportions for i t a in Degree 3 (Dots) and 4 (Short Dashes) Cases,

end by UsSAS Those for 6 a 2o in Degree 3 (Mediua Dashes) and 4 (Long Dashes)

Cases, Raspettively. They Are Compared with the Theoretical Item Characteristic
Function (Solid Curve) , the Frequency Ratios of 6 (Solid Line with Diamonds),and the Criterion Item Characteristic Function in the Sitple Sum Procedure

(Solid Cur•e with Crosses).

other. This tendency is common to all the ten binary test items.Ai
If we replace -(tjc) in (5.53) by the true density,

0(.ts), we can obtain the pseudo-criterion operating

.iharacteristic of xh • In the present study, four different

pseudo-criterion item characteristic functions were obtained,

using the four different estimates of p(sexh-7l) , which we have

observed in Figure 5-13-10. The resultant pseudo-criterion item

characteristic functions turned out to be very close to the

"estimated item characteristic functions obtained by using the same

p '(sxh-1l) , for each of the ten binary test items, the fact which

supports the usefulness of both Pearson System Method and

Two-Parameter Beta Method.

The estimated ability distributions for the success and the

'Si

_ _ '. ... 7..Q7 ,- '777,7i.:- _
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,0.8 ITEM 6

(4

• 0.2

40 4. -2.0 -1.0 0.0 1to . 30 4

LATENT TMAIT 0

FIGURE 5-13-12

Estimated Item Characteristic Functions of Item 6 Obtained by the Propoitioned Sum
Procedure of the Conditional P.D.F. Approach with the Tvo.-Paraeater Beth Method, by
Using the Proportions for 1 0 a in Degree 3 (Dots) and 4 (Short Dashes) Cases,

and by Using Those for 6 1 2a in Degree 3 (Medium Dashes) and 4 (Long Dashes)

Cases, Respectively. They Ara Compared with the Theoretical Item Characteristic
Function (Solid Curve), The Frequency Ratios of 0 (Solid Line with Diamonds),

and the Criterion Item Characteristic Function in the Simple Sum Procedure

(Solid Curve with Crosses).

failure subpopulatlons for each item turned out to be very similar

to those obtained by the other combinations of an approach and a

method, for both Degree 3 and 4 Cases.

Figure 5-13-13 prescuts tlte estimated density functions for

the total population, which were obtained by the Two-Parameter Beta

Method, usiog 0 ± 0.215 as the inter" al for computing O(scxh-l))

in Degree 3 and 4 cases, by dotted and dashed curves, respectively,

together with the theoretical density, f(e) .. We can see in this

figure that these two results are close to each other, and reasonably

close to the uniform density. The correspondiag results obtained by

using the interval, + 0.430 , turned out to be very close to

these results.

iJ

1I
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0.6

i , •_ 0~.4 """

A40 -30 -02.Q02.0 3.0 4& 0
[.,• iLATENT TRAIT 0

FIGURE 5-13-13

Estimated Density Functions of Ability e , Obtained by the Proportioned
Sum Procedure of the Conditional P.D.?. Approach with the Two-pavameter

Beta Method, by Using the Proportions for the Interval, : - a , in

Degree 3 (Dots) and Degree 4 (Short Dashes) Cases. in Compsrison vith
the Theoretical Density Function.

We have also obtained the corresponding four estimated density

functions by the Pearson System Method. The results turned out to be

fairly close to those obtained by the Two-Paramcter Beta Method. In

V fact, all the other results obtained by the otht,• approaches turned

out to be similar, with some deviations, i.e., some of them are a

little closer to the theoretical density function, and some of them

are a little less close.

(V.14; Remark on the Approximation of *(rJ•) jy a Normal
Density Function

We have seen in the previous sections that, in spite of its

relatively restricted shape of the normal density dunction, -mal
Approach Method works just as well as the other two methods, i.e.,
Pearson System Method and Two-Parameter Beta Method, in approximating

the conditional density function, *(T t) . There is a good reason

behind this fact, which we shall observe in this section.

Suppose that the density function, f*(Q) , is uniform for

a certain interval of Tr , iT,) . Then we can write

7I

°•I



I.7, I

-90- V-45

(5.55) ,(rIt) - • )('jt f*('O) f *(flr) f*(r) dt- 1

Since we have

(5.56) V(fl-r) m (2W)-1/2 (-i exp[(tlt) 2 /(2a 2 )]

" (27)- 1 a2 -I expt([t1) 2 /(2a 2 ))

from this and (5.55), we find that *(TIl) is a truncated normal

density function. When a is small, for a wide range of T , this

is practically equal to the complete normal density function, which

is given by the rightest-hand side of (5.56). Normal Approach Method,

therefore, must work well in this situation.

If the marginal density, f*(T) , is a normal density function

with V and ý as its two parameters, then the joint distribution

of T and t will be the bivariate normal listribution, with U and

(a +•2) as the two'parameters for the marginal density function,

ig() ,eand

I: (5.57) P (22

as the fifth parameter. Thus the conditional density, *(¶I"t) ,

is a normal density function, with (2+2 2) (C)(2+42)"I and

0 (C2 )- as the two parameters.
These two facts indicate that, if the distribution of T isI

close to either a normal distribution or a uniform distribution, or

between the two, Normal Approach Method will work well in

approximating the conditional density function, *(TjIt)

- - -- *...>
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VI Estimation of the Operating Characteristics of the Discrete
Item Responses and That of Ability Distributions: III

Following Chapters 3 and 5, in the present chapter, we shall

integrate the results and findings of the part of our research under

this title. It also includes certain observations about tests in

general, objective testing, ethics behind Bayesian estimation, and

some other related topics. The main subject in the present chapter

is to find out how small the number of test items can be in our Old

Test. Alternative estimators fov the maximum likelihood estimator will

be introduced, which -an be used when the amount of test information of

our Old Test is not large enough for the entire range of ability e of

our interest, and, consequentiy, there exist more than a fe~w positive

and/or negative infinities for the maximum likelihood estimates of

ability of our examinees.

(VI.1) Objective Testing and Exchangeabil

Equal opportunities have been considered to be ethical in our

society. In personnel selection, for example, we are supposed to

but not upon their ethnic backgrounds, ages, sexes, and other

attributes which have little to do with their capabilities for a

specified job. The translation of this equal oppontunity principle

to testing will be that we should: 1) develop and use valid tests for

the selection purpose; 2) objectively analyze the results of the

tests; and 3) make our recommendations as to which applicants should

be accepted and which should be rejected on the basis of these

objective findings only.

Although the above first and third statements are readily

accepted 'y people in general, including researchers, for some reason I
the second statement has attracted little attention. Note, however,

that this is the part that researchers should be most responsible for.

Bayesian estimation of ability has been accepted for many years

as a valid method by researchers. This fact does not justify, however,I

certain serious flaws Bayesian estimation has, which are clearly

' 1[1
- I1
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agaiust the principle of objective testing. It assumes the

exchangeability of individuals who belong to a certain subpopulation,

and uses the ability distribation of the subpopulatio as the prior.

l Let us assume that we have two ethnic groups, A and B

Figure 6-1-1 presents the priors of these two hypothetical ethnic

subpopulations with respect to ability 0 . The basic idea behind

the Bayesian estimation is that, within each ethnic subpopulation,

A or B , the individuals are exchangeable. Are they really?

Suppose that we fix the level of e at 60 , as is indicated in

Figure 6-1-1. If we consider the subset of individuals vhose ability

ETHNIC GROUP A ETHNIC GROUP B

tz0.2

00

e I
-0. • • t • t • 0 90 0

FIGURE 6-1-1

Density hmetione of the Ability Distributims of Tw othetical Ztbnie
Qrw:pa, A mad 3

Slevels are uniformly e. they will include certain people from the

S~ethnic group A , and also certain othur people who be-long to B.

Ii Our best Ccommo sense tells us that these individuals are the people
who are exchangeable. In the Bayesian estimation, however. they are

not; in its logic, those who belong to A are exchangeable amoug

thmselves, and so are those who belong to B .

In order to observe this issue from a somewhat different angla,

II
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we shall consider a real test, LIS-U (Indco and Samejima, 1962,

1966; SamejIma, 1969, RR-80-3). Figure 6-1-2 presents the test

information function and its square root of LIS-U by solid and

7.A

6.0

4.0
&0

2&0

2.0

1.0

-4.0 -&0 -2.0 -10 0O 1.0 2.0 10 4,0
LATENT TRAIT •

FIGURE 6-1-2

Teat Information Function (Solid Line) and Its Square toot (Votted Line) of LIS-U.

dotted curves, respectively. The test consists of seven binary

items, which make a fairly short test. Bayes modal estimator

(S mejima, 1969), V , of ability 0 is the modal point of 6 for

the function BV(6) such that

(6.1) Bv(e) () f(e)

This estimator was adopted as the estimator of ability 0 , using
the density function of the ability distribution, f(O) , as the

prior, for each of the 27 - 128 response patterns. The regression

of 8 on ability 0 is given by

(6.2) Em6lO)(0)

' V "
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Figure 6-1-3 presents the four regressions of § on 6 using the

four different priors, u(0.0,1.0), n(-1.0,l.0) ui(l.0,1.0) and

n(0,O,0.5) , by solid, long dashed, short dashed and dotted curves,

respectively. Let us assume that the second prior is for the

2410

.......... ............-.......0 3

I: -

LATEN TRAW 0t

!" ',FIGURE 6-1-3

"IYour Regressions of tbe sayes )hal N stimate on Ability uead oan
7 LXS-U , vith the Priors. u(0.O,1.O) (Solid Line) , u(-1.O,l.O)

(tans, Dashed Lime), tk(1.0,1.0) (Short, Dashed Lin*) *and
.a(O-,O0.5) (Dotted Line) , Respectively.

ethnic group A , and the third prior is for the ethnic group B , and
0 2.0 . We can see in this figure that, for two Individuals, whose

ab-lity levels are uniformly 60 but belong to the ethnic groups A

and B , respectively, the distributions of the Bayes modal estimate,

are different, and their expectations are approximately 1.0 and
1.6 , respectively -- a substantial difference'!

SLet us assume, further, that the first and the fourth priors

are for man and women, respectively. If the first individual of the

above two happens to be male, then, using u(O.O,l.0) as the prior,

I his expected Bayes modal estimate is approximately 1.3 . Which

.1 should we take for this first individual, 1.0 or 1.3 , as the° [ "
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expected value of his ability estimate? This individual will obtain

a higher score if the prior for men is used than if that of the

ethnic group A is used. Perhaps he would rather be treated as a

man than am a member of the ethnic group A . If the second

individual happens to be female, then her expected Bayes modal

estimate becomes approximately 0.7 . Again, there are two expectedJ

values for her, 1.6 and 0.7 , and she will obtain a higher score

if she is categorized as a member-of the ethnic group B rather

than as a woman. If we use the second priors f or the two 1

individuals, the expected Bayes modal estimates are 1.3 and 0.7
i.e., the reversal of the order from that of 1.0 and 1.6 !Thus,

F if we take the first set of priors in selection, then we will be

saying, "If there are two people whose ability levels are exactly

the same and at 2.0 q then we will accept the one from the ethnic

group B ."If we take the second set of priors, then we will be

saying, "If there are two such individuals who happen to be male and

~; I female, then we will accept the man and reject the woman." We will
be very likely to accept the second individual if we take the first

F set of priors, and, if we take the second set, then it will be highly

probable that we accept the first individual and reject the second.

This is what it amounts to when we tise a Bayesian estimator of4

ability in our selection.I' A solution for this chaos will be to divide each ethnic group

further, to make four groups instead of two, i.e., ethnic A and

male, ethnic B and male, ethnic A and female, and ethnic B and

female. It should be noted, however, that every individual has much

more than two casual attributes like his or her ethnic background

and sex, and similar problems will happen for these four groups.

Then we may need eight groups instead of four, sixteen, thirty-two,

etc. In this way, we will reach, fairly soon, the conclusion that

each individual has his or her own prior, or each prior includes only

one individual. Then Bayesian estimation may finally be justifiable

and useful. In such a case, however, why do we need testing at all

if we know about each individual's ability so well? In most cases

~y' -- ~-*'-~. ------- c-- -- _________7771=y__
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we do not, and that is why we need testing.

The flaw of the Bayesian estimation comes from the fact that

it deals with a group of individuals who are not exchangeable as if

they were exchangeable, and treats those who are exchangeable, i.e.,

* individuals whose ability levels are exactly the same, as if they
were not exchangeable. This is against the principle of objective

testing. It is a typical example of failure in objectively

analyzing the results of testing.

* -. (VI. 2) Every Test Has a Limitation

We can see in Figure 6-1-3 that for the values of ability

e , approximately, greater than 1.0 and also those, approximately,

less than -1.0 , there are little changes in the regression of
on 8 , for each of the four different priors. In fact, the

conditional distribution of the Bayes modal estimate, ,given 0

approaches the one point distribution at the modal point of 8 for

the product, Pv-in (0) f(0) , as 0 tends to negative infinity, and
it approaches the one point distribution at the modal point of 0

for the product, Pv V (0) f(D) , as 0 tends to positive infinity,

where V-mmn and V-max indicate the two extreme response patterns,
(0,0,...,0) and (m1 ,m2 ,...tmn) . This means that for these

outside ranges of ability 0 LIS-U is powerless, and it is the

prior that takes the essential role in determining the value of the
Bayes modal estimate. It is as if the examinee were cheated,

obtaining something other than the information the test itself has I
provided.

We must accept the fact that every test has a limitation as I
to the range of ability which it can measure. Escaping to priors will
by no means enhance this range, but will impose the bias which was

described in the preceding section. No single test has an infinite

number of test items, so it should not be expected that any test can

measure an unlimited range of ability.

I!

: I'
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(VI.3) AltWrnative Estimators for the Maximum Likelihood Estimator

A question will arise as to whether there is any way to J
enhance the range of ability-for which a specified test is powerful,

without depending upon priors or any other zesources of irrelevant

information. This can be done by replacing negative and positive

infinities of the maximum likelihood estimates for the two extreme

response patterns, V-min and V-max , by some appropriate finite

numbers. In search of such alternative estimators, our goal was to

find suitable substitutes which do not depend upon any specific

populations of examinees, but are population-free, unlike Bayesian

estimators.

It is desirable that such alternative estimators provide us

with the conditional unbiasedness, given e , as is the case with

the maximum likelihood estimator in the limiting situation where

we have infinitely many test items. We notice that the operating

characteristic P (e) strictly decreases in 6 , and P
V-mixiVma

strictly increases in 8 , as long as our test items follow a model, 2

or models, like the normal ogive and logistic models. Thus we can

conceive of a critical point, ec , which Satisfies

P m a 0 for e > ) c

(6.3)
P {Pvma() 6 0 for e ; e

Figure 6-3-1 presents the operating characteristics of the

two extreme response patterns, P (8) and Pv (e) , of

LIS-U , by solid and dotted curves, respectively. The critical

value, 0 , was obtained in such a way that the product of these

two operating characteristics be maximal at'this point. It turned

out to be -0.0088

We shall aim at finding finite substitutes for the two
maximum likelihood estimates, kV-m•1 and ,V-max which are

negative and positive infinites, respectively, in such a way that

the substitution should provide us with a regression which is close

i -7
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FIGURE 6-3-1

3• Operating Characteristics of the Two •xtrse Response Patterns,H (0,0,0,0,0,0,0) (Solid Line) and ( 1,1,1,1,1,1,1 ) (Dotted
Line), of LIS-U ,and the Position of the Critical Value c

-enough to 0 ., i.e., the unbiasedness of the estimator, for some

range of 0 . Let mn and I*max denote such estimates,
Sand e8• b the resultant estimator, such that

"1 V-mI for V-min

-(6.4) I*jV-a for V-max

1 for all the other response

patterns.

We can w efor the regression of 0* on ability 6 such that

1 (6.5) P(--I0) - . P (e) + 0* P (6)I: v VOV rain V V V-mzu PV-mia

+0I* P ()

• 1

-.... i
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E 'IV P V(6) + eV-bmn PV-M¶n(e)
fl ~~~~VOV-min Vvvji -

VOY-max
for e8

~c

VOV-min % + PV (e)

VOV-max
for e > e -.

If this estimator, O , provides us with an approximate

unbiasedness for a certain range of 6 , (0,6) , then we shall )
be able to'write

VV-min %v ( + e*-bin PV-min(e);"
V#V-max

(6.6) for e < e <, e .
(6.6) C"

VV-Min § Pv(e) + emax PVmax(e)A
VOV-max fofor e < e < e •

In practice, we must search the interval of e , (e,0) , for

which such an estimator, 6* , is available, in relation with a

apecific test of our interest. From (6.6), we can further write

V#V-Ein v -( dO + 0 (0) d

VOV-max

.,1 (e62-2) •
(6.7) 1 c

2 cI--~ v Pv(e) dO + 0•* _a evmax~e) dO I d
V-V-mln jc6 V-max e VM
V-V-max c

A 1 (Z 2) .2
2 c
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Thus the two estimates, 68"Mi and e0 *mx ,can be obtained by

5 ~imU(8~8)~ E e r (0) do]

'V-i 2Vc-mi - qa

[ C- - v~v-•uv)in e
V'V#V-max

(e) de]
1-

(6.8) 

e

[.!<ý2 e2) E IVYe de3

VOV-max C

P PV-max(e) de61-

with some appropriate vaiues for e and .

.* 1e used eleven different sets of e and ± , ±1.50 , ±1.75 ,

±2.00 , ±2.25 , -k2.50 , ±3.00 , ±3.50 , ±4.00 , ±4.50 , ±5.00 ,

and ±5,50 , for the purpose of experimentation. The resultant set

of estimates, G.•_min and e* , which was obtained by using

each of these eleven intervals, is given in Table 6-3-1. Figure 6-3-2
illustrates the regreasions of 0*-Min ou e , obtained by using
(-1.5, 1.5) and (-2.25, 2.25) , respectively, as (e,;) , by

solid and dashed curves. The values of e-min and OV x Mx

turned out to be -1.47883 and 1.52237 in the former case, and
-1.79255 and 1.77649 in the latter, as we can see in

Table 6-3-1. In the same figure also presented are the unbiasedness

line, i.e., the line which passes the origin with the angle of 45

degree from the abscissa, and the regression of the Bayes modal

estimate with the prior, n(0.0,1.0) , by a solid line and a dotted

curve, respectively. We can see in this figure that, within each

interval, each of these two regressions is reasonably close to the

unbiasedness line, and much closer than the regression of the Bayes
modal estimate. If we enhance the interval further, the deviation

.,!

__ *11
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31!n oaofbiats -
TABLE 6-3-1

of Ability for the TWo Zxtresm Response Patterns,
(0,,... an d (1l..,),Obtained on L.9-V,

Using llewai Different Iutervals for (0.8)
b,1

4tsi V-IWn

t 1.50 -1.47883 1.52237

1 1.75 -1.64702 1.65605 !

t 2.00 -1.79255 1.77649

1 2.50 -2.05136 2.00754

1 3.00 -2.29490 2.24127

S3.50 -2.53641 2.48011

1 4.00 -2.77945 2.72254

1 4.50 -3.02430 2.96720

t; 5.00 -3.27051 3.21329

t 5.50 -3.51765 3.46032

from the unbiasedness line becomes larger (cf. RR-80-3). Since the

least finite value of the maximum likelihood ,stimate for LIS-U is

-1.3167 for the response pattern, (0,0,0,1,0,0,0) , and the
greatest finite value is 1.3028 for (110,11),either one

v of the above sets of 8*_i and 8e*a will be adequate, and

so is any of them obtained by using intervals between (-1.5, 1.5)
and (-2.25, 2.25).

The introduction of the new estimator, ,*, , bas enbanced
v

the range of ability for which a given test is aumningful without
sacrificing the objectivity of testing, as Bayesian estimates do.
When the number of items is as small as seven and all items are

binary items, as is the case with LIS-U , the computation of
IV*_min and I* is relatively easy, owing to the fact that

the number of all possible response patterns is as mall as 128

'4I



-103- VI-12

4.0

* I
..- ---------

_ _ __, um ' ' 'I ,

LATENT TRArT 0

'4.40.4044 10 . . .0. 0

FIGURE 6-3-2

Two Regressiosa of the Moditfied )Iuzimm Lkslhbood Taeelate,
0, on Ability 0 , Using (-1.5, 1.5) (Dahed CumYS) and

(-2,25, 2.25) (Solid Curve) as (0, 3) , Together with the
Regression of the Sayae M4odel Zatlante with (O,1l) as the, 1•ftor (Dotted cur"e)

Note, however, that the increase in the number of items, and/or in

the number of item scores for each item, will soon make it

practically impossible to compute these two substitutes estimates,

since the number of all possible response patterns will increase by
gigantic steps. For example, if a test has ton binary items
"instead of seven, the number of all possible response patterns will

be 1,024 ; if a test has seven three-item-score-category items,

the number of all possible response patterns will be 2,187 ; if a

test has fifteen three-item-score-category items, it will be as

large as 14,348,907 1

It is necessary, therefore, that we invent som method to

- -----•,'.---
-" , i
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deal with the situation in which the number of all the possible
response patterns is too large for us to compute 0V*_i and

6* directly. By virtue of the availability of electronic
.4ma

computers and the Monte Carlo method, this can be done by

introducing the sample statistic versions of the two estimators.

Let N be the number of examinees who were selected

randomly from the uniform distribution for the interval of e

(,).Let N1L d~enote the number of examinees who belong to the
above sample and whose levels of ability are lower than the

critical value e , and N be of that of those whose abilityc H
levels are higher than, or equal to, 6 Thus we can write

(6.9) N - 1L+ NK

Let N~v and N1W denote the numbers of examainees who obtained

the response pat tern V ,in the above two subgroups of the sample,

L LiV
(6.10) -~N

V
(c:

It can be seen that the sample statistic corresponding to P V (e) de

in the formula (6.8) is NLv(6c - 6) Nl , and also the one for

* I Pv~(8) d6 is 'Nv(; - e ) Nil Substituting these sample

staistcsinto (6.8) and rearranging,' we obtain 6,*,_ and
statistcs-VamL such that

V-min 2 c - V VL-i V.-i
/ ~(6.1) ~ m ~ 6 N -VOV aX VH]U.

2 ~~VOV--min V-a
V#V.,uaxJ
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where NLV-nin and NHV-mx are the numbers of examinees who

belong to the lower subgroup and obtained the response pattern

k• V-min , and those who belong to the upper subgroup and obtained

*1the response pattern V-max , respectively.

It can be seen that a* and -a , which were
V-wmin V-max

defined in the preceding paragraph. are consistent, or converge in
probability to 0* and 0* , respectively, as the sample

V-min V-max
sizes increase. In other words, if NL ' NH LV-miu and

i: NHmax are large enough, the probabilities with which 9*V-in

and -* assume values within the vicinities of 0* and
V-wmax V-min

,. 0* , respectively, will be very high. Although the two
V-wax

numbers, NLV win and Nvmx also depend upon the choice of

the interval, (0,E) , by virtue of the Monte Carlo method, we can

control the two sample sizes, NL and NH , as we wish.

A procedure with which we may obtain V* and k*
V-mIn V-max

which are defined by (6.11), can be summarized as follows.

(1) Determine the interval, (e,ý) .

(2) Obtain the critical value, e .

(3) Determine the sample size, N , which makes both NL and

NH large enough for our purpose.

(4) Produce the ability levels of these N hypothetical

subjects from the uniform distribution for the interval,

(6,b) . This can be done either by the Monte Carlo

method, or by placing the N examinees at the equally

spaced points in the entire interval, (0,;) , or using

one of its variations.

(5) Calibrate by the Monte Carlo method a response pattern

for each of the N hypothetical examinees with respect

to the n test items of our test.

(6) Find out the two frequencies, NL and NE , for each.. I
. 4i L
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response pattern V

(7) Obtain the maximum likelihood estimate V for each
V

response pattern whose frequencies, NLV and NV , are

not both zero, excluding V-rtn and V-ma=x

* (8) Use the above results in (6.11), and compute 6* and: ~V-rain

V-max

Note that the probabilities with which we obtain positive frequencies

for NLV-ax and N HV-mi are both negligibly small, and this

fact can be used as a checking process.

Thus we can define the new estimator, 0 , such that

e*i for V -V-min
•,, -min

(6.12) 6* e_ for V V-max
V V-maxfo V-V-a

otherwise,

as distinct from e* , which is defined by (6.4). Unlike e,

this estimator, e• , depends upon the Monte Carlo method, and,

therefore, it has some fluctuations. In order to reach high

accuracies, we need large numbers for NL and N
H

(VI.4) 1ayes Estimator with a Uniform Density as the Prior

Let viV be the Bayes estimator with the prior, fV(e)

We can write

(6.13) - f (0) de

where f (e) is the density function of e for the subgroup of

examinees whose response patterns are uniformly V , which is given

by

v [-

,iV
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(6.14) - T- f(e) Ye) f(e) P d~f 1

This estimator is the one which makes the mean square error, such

that

L(6.15) Q = IE(O* - I)2]

minimal (Samejima, 1969), where e** is any conceivable estumator
of e based upon the response pattern V . It is obvious that

this estimator heavily depends upon the prior.

We can think of a population-free estimator based on the Bayes

estimator, by removing the influence of a particular prior. Let

us assume that we can more or less specify the interval, (e,1)

for which our test is meaningful. To lift the effect of a given

prior, we shall use the uniform density for this interval of 8

Let pfi be the resultant estimator. Thus we have

(6.16) f(6) " f
0w otherwise.

Substituting (6.16) into (6.13) and rearranging, we obtain

(6.17) e V() dO I V(e) d"lJV e V" J

Note that this estimator depends solely upon the operating
characteristic, PV(0) , and the interval, (e,W) , for which our

V-
test is meaningful.

In practice, it may not be wise to use this estimator, since
even with a relatively small number of test items the number of

response patterns is so large and the calculation of the estimates

"is time-consuming. We could use two estimates, *' and

' If

I" L t

4 ~ ~~~~~~~~~ .... -- •t.- i|--~~-.--..~. ..--
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*'-ma, for the replacement of negative and positive infinities

of the maximum likelihood estimate for the two extreme response

patterns, V-min and V-max , however, without going through too

tedious computations.

(VI.5) Subtest 3

We notice in Figure 3-4-1 that the square root of the test

*' information function for Subtest 3 decreases quickly as 0 departs

from the middle part of the interval, (-3.0, 3.0) . With this

subtest as the Old Test, we find fourteen hypothetical examinees

who obtained V-min , and twelve who obtained V-max , for their

response patterns. Since this is as large as 5.2 percent of the

total number of examinees, instead of excluding them, we decided to

keep them and experiment with them on the alternative estimator, ^,
which was introduced in the Section VI.3 ,

DJ

With Sibtest 9 as our Old Test, we find one examinee who

obtained V-min and one whose response pattern is V-max . In

this case, we excluded these two from our original data and used ..

498 examinees in our estimation process, since there are only two
and their exclusion will not change the result substantially. With

all the other subtests, none of our hypothetical examinees obtained

V-mmn or V-max.

Table 6-5-i presents the identification number and the

ability level for each of the fourteen hypothetical examinees who U
"obtained V-min and the twelve who obtained V-max , for Subteit 3

We can see in this table that, although most of these twenty-six

examinees have the ability levels equal to or close to one of the

two extreme values of 0 , -2.475 and 2.475 , there are some

examinees, like 118 , 210 and 491 , whose ability levels are

substantially less than 2.475 in absolute values. Tables 6-5-2

and 6-5-3 present the response patterns of these twenty-six

examinees for the ten unknown, binary test items.

We need some modification to the estimator, however. Since

"'1

__ _ _ _ ?
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TABLE 6-5-1

I&MWet ation LuIbsr sod AbhIIty lOM h of ea Of the
los-MM UpO~tmIclal ftaftlas Vo ObtalsW V-sia
md of the Tuelve ho ObtalwW V-msa of %ubtet 3

ID ID 0

1 -2.475 491 2.025
101 -2.475 193 2.125
201 -2.475 493 2.125

401 -2.475 294 2.175
2 -2.425 296 2.275

102 -2.425 397 2.325

202 -2.425 98 2.375
302 -2.425 198 2.375
303 -2.375 199 2.425

4 -2.325 299 2.425
108 -2.125 499 2.425

109 -2.075 300 2.475

210 -2.025
118 -1.625

"the square root of the test information function of Subtest 3 is not

constant, we must transform e to r in the process of estimating

the operating characteristics of the item scores. We recall that,

with the transformed scale of ability, the asymptotic unbiasedness

and the normality were used as the approximation to the conditional

distribution of the maximum likelihood estimate, TV , given T . We I
need, therefore, the unbiasedness of the modified estifr "r with

respect to T , instead of e . Let ;* be the estimator with
V

respect to T . Thus we can write:.

for V -V-sinf

(6.18) j * for V - V-max

otherwise

where -* and *P*- are defined by

V-sin V-max

* >:, 7

* **-,-.--.-'-'-- -
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TABLE 6-5-2

Identification *jmbar and the Response Pattern
of the Tei Unknown, binary Items Obtained by
Each of the Fourteen Hypothetical Examinees

WhoM. Response Patterns of Subtest 3 are
V-mm.

ID Response
Pattern

1 0001000000
101 0100000000

201 0100000000

401 1000000000

2 0100000000

102 0000000000

202 0900.00000

302 1000000000

303 1000000000

4 , .100000000

108 1000000000
S109 1001000000

210 1000000000

118 1010000000

[-T+ Tr) N- N NV LV -TýMii 2 c - L ViVu NLV -in

(6.19) vyv-mex
-I( +^ N -

-max 2 - c H V#V-m n HV-maxV

*• . VAV-max

In these formulas, T, , , and the maximum likelihood
estimate, •V , can uniformly be transformed from O , _, B

and e , by means of T - T(6)
Figure 6-5-1 presents the two operating characteristics,

P* (() and P* (T) , as functions of T , by c Lid and
V-min V-max

dotted curves, respectively. In the same figure, also presented

are the positions of two Tc 's which we used separately. Eight

different intervals were used for (.,T) , and the results are

-'Ai
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TABLE 6-5-3

tdautification Iuaber and the Response Patter

of the Tan Uinknown, Binary Itow Obtained by

EAch of the Twelve Hypothetical ExamSneeS

Whoae Response Patterns of Subtest 3 are
ii 

V - ax .•

Response
aID Pattern

"491 i11111000

193 1111111110

4937 1111111110
294 1111111111

296 1111111111

397 1111111111

98 1111111111

198 1111101110

199 1111111111

299 1111111110

499 1111111111

300 1111111111

~~1.0

"0.2 44M 0. LM

.40 40.0 - 0 W . .
S0.2 4.W0 . o.2=04

LATENT TRAIT

FIGURE 6-5-13

Overating Characteristic* of V-'igi (Solid uI4) 104.

V-sax (Dotted Line) of Subteat 3 ivan As PunctJiOa
of the Transformed Latenmt Trait T , Togetbher wit'h the

Critical Value, -C Set at Two Ditfferent "olitions.

• i•

i
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shown in Tables 6-5-4 and 6-5-5 for T 0.1203 and r, -0.5455

respectively. It is obvious that for the first three intervals of

TABLE 6-5-4

Nwo letiastes, and ;~V,..g Obtained by Using Iea of the Zight

Different Intervals. (i,T) , and C 0.1.203 for Subtest 3 . The Sample
Siaes, NIL , NH and I , Together with the Two Frequencies NV.i and

S1V.,-m AVG Also Phmsented for Each Csse.

II

QWe 1 ,f V . N I % N

1 -1.8456 2.0771 2.9707 -0.6316 1 3 1,640 1,630 3,270

2 -2.0521 2.2668 5.8168 0.6564 1 10 1,810 1,79 3,600

3 -2.2461 2.4373 -1.5891 1.7371 8 19 1,970 1,930 3,900
4 -2.4273 2.5860 -1.8162 2.2439 23 32 2,125 2,055 4,180
5 -2.5131 2.6516 -2.2006 2.4000 39 42 2,195 2,110 4,305
6 -2.6757 2.7636 -2.5467 2.6242 81 74 2,330 2,205 4,535
7 -2.8267 2.8095 -2.7265 2.7370 145 93 2,455 2,240 4,695I 8 "3.0000 3.0000 -2.8432 2.8855 258 196 2,600 2,400 5,000

TABLE 6-5-5

TWo E-ti•ate.. ;-_m end i-.4 , Obtaine by Using Each of the light
Different intervals, (-r.) , and *cr -0.5455 for Subteat 3 . The Sample
Sies., IL %l and N , Together with the Two 7requencies "V-sn and

NIV-meg, Are Also Presented for Each Case.

Cuse I t ;0_0,0 x-,v V-Me MUL % N

1 -1.8456 2.0771 7.7998 -2.2507 1 3 1,085 .2,185 3,270
2 -2.0521 2.2668 11.3745 0.1132 1 10 1,255 2,345 3,600

3 -2.2461 2.4373 -0,8183 1.4641 8 19 1,41.5 2,485 3,900

4 -2.4273 2.5860 -1.6061 2.0856 23 32 1,570 2,610 4,180

5 -2.5131 2.6516 -2.0651 2,2750 39 42 1,640 2,665 4,305

6 -2.6757 2.7636 -2.4788 2.5455 81 74 1,775 2,760 4,535

7 -2.8267 2.8095 -2.6867 2.6865 145 93 1,900 2,795 4,695

8 -3.0000 3.0000 -2.8214 2.8596 258 196 2,045 2,955 5,000

.4

-. . . . . .. . . .
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T the results are meaningless, since the two frequencies, NV-in
and NV are so small. We can also see that, as these

frequencies grow larger, the resultant estimates get closer to each

other over the two different values of T

To compare these results with the largest and the smallest

finite maximum likelihood estimates for Subtest 3, the values of

TV for the fifteen response patterns in which only one item is

answered correctly, and those for the fifteen other response

patterns in which only one item is answered incorrectly, are shown
[ A

in Table 6-5-6. We can see in this table that the least finite

is -2.6518 and the greatest finite TV is 2.7683 . We notice

in Tables 6-5-4 and 6-5-5 that only the largest interval of T

(-3.0, 3.0) , provides us with two alternatite estimates, which

are greater in absolute values than those two finite estimates.
Our selection is, therefore, -2.843 for T* ansld 2.885 for

V-mmn[I, TABLE 6-5-6
f , Fifteen Response Patterns of Subtest 3, Each of Which Consists of Fourteen

Zeros~and One )1'1"6 , and the Corresponding Twio M4aximum IY* ' hood Estimates,
Ovad Ir, for Each Response Pattern, and Anothe' - of Fifteen

Response Patterns, Each of Which Haes (a-I) a s --ad Ont (a -1)
9£

and the Corresponuding Ov end -rvfor Zach.

Response Pattern Respouse Pattern e
V TV iV IV

000000000000001 -1.3998 -1.7296 222222222222221 2.3526 2.6855

6000000000000010 -1.5206 -1.8562 222222222222212 2.34S4 2.6800

00000000000100 -1.9182 -2.2347 222222222222122 2.4651 2.7683
00000W000001000 -1.6990 -2.0336 222222222221222 2.2762 2.*6258
00000000001000 -1.9465 -2.2592 222222222212222 2.3359 2.6727

000000000100000 -1.8783 -2.1995 222222222122222 2.1981 2.5620

oooooooooooooo -1.8346 -2.1603 222222221222222 2.0525 2.4359I
000000010000000 -2.0033 -2.3075 222222212222222 2.0810 2.4613

000000100000000 -2.0205 -2.3218 222222122222222 1.9725 2.3627I
000001,00.0000000 -2.1792 -2.4483 222221222222222 2.0237 2.4098

000010000000000 -2.0811 -2.3714 222212222222222 1.7479 2L1431
000100o000000000 -2.3846 -2.5959 222122222222222 2.0530 2.4363

001000000000000 -2.3887 -2.5987 221222222222222 1.9407 2.3329

010000000000000 -2.3585 -2.5782 212222222222222 1.7595 2.1555

100000000000000 -2.4698 -2.6518 122222222222222 1.5532 2.2488

.... .
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respectively. The sample regression of * on T for
V-max V

our five hundred observations turned out to be 0. 9 98 T + 0.001

(cf. RR-81-2), which is very close to the unbiasedness.

The other two alternative estimates, i*' and I*'IlV-min 'lY-max,

which were introduced in the preceding section, were also computed

for each of the eight intervals. These values were calculated with

respect to T , instead of 0 , and we obtained 'V - -1.7434,

-1.9286, -2.0965, -2.2464, -2.3143, -2.4364, -2.5402, -2.7527 and
1U1 V_* x - 1.9980, 2.1810, 2,3457, 2.4905, 2.5551, 2.6684, 2.7171, 2.7805

for Cases 1 through 8, respectively. As the interval of T grows larger,

the resultant estimates get closer to the corresponding values of

a n We did not use them as the substitutes for negative
and positive infinities of the maximum likelihood estimate, however,

since the conditional unbiasedness of our estimate is an important

characteristic in our rationale behind the methods and approaches

for estimating the operating characteristics of unknown test items.

M(V.6) Nine Subtests As Our Old Test

In the first year of the present research, the original Old

Test was solely used as our Old Test in estimating the item

characteristic functions of the ten unknown, binary test items.

Thus the first seven research reports, RR-77-1, RR-78-1 through

RR-78-6, out of the total eleven, which are written on the

estimation of the operating characteristics, are based upon the

original Old Test, while the other four research reports, RR-80-2,

RR-80-4, RR-81-2 and RR-81-3, are based upon the nine subtests of

the original Old Tast (cf. Chapter 2). The original Old Test

consists of thirty-five test items of three score categories each,

whose item parameters are given in Table 3-4-1 of Section 111.4

with each item following the normal ogive model. Furthermore, it

has an approximately constant square root of the test information

function, 4.65 , for the interval of ability of our interest.

This is an ideal situation, and it also provides us with simpler

methods and approaches, in which no transformation of ability ad ie
;•:: '..i' is needed. This situation can be materialized easily in adaptive I•,

7I-
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testing, which we shall observe in Chapter 7.

* On the other hand, it will be meaningful to test the

robustners of our methods and approaches of estimating the operating

characteristics by using a less than ideal Old Test, i.e., one which

has fewer test items and a non-constant square root of the test

information function. This experiment, if the result turns out to

be supportive, will have a benefit of expanding the applicability

of our methods and approaches, since in the paper-and-pencil testing

situation most tests do not provide us with constant amounts of test

information.

The selection of the test items for each of the niue subtests

of our original Old Test is shown in Table 3-4-1, and the square

"root of the test information function is given in Figure 3-4-1, of

Section 111.4 . We notice that Subtest 3 is also a subtest of

S-ibtest 1, and Subtest 4 is a subtest of Subtest 2, and all the

other five subtests are those of the original Old Test only.

In this experimentation, Simple Sum Procedure of the
I! T Conditional P.D.F. Approach (cf. Szction V.13) with the Normal

* Approach Method (cf. Section V.9) was selected as our combination

of a method and an approach. The main reason for this selection of

the Simple Sum Procedure is its simplicity, which does not require

the approximation to the density function of Y with respect to

"each item score category of each unknown test item, as Bivariate

"P.D.F. Approach does, nor the weight and the proportion which

Weighted Sum Procedure and Proportioned Sum Procedure need,

* respectively. The main reasons why we selected Normal Approach

Method are, again, its simplicity, which requires only the first two

conditional moments of t , given T , and the i:act that the

criterion item characteristic function had been obtained in the 4

Simple Sum Procedure for each of the unknown test items, and the

results obtained by the Normal Approach Method, as well as those

obtained by the Pearson System Method and the Two-Parameter Beta 3
"Method, respectively, turned out to be practically identical with

"- .- . . -
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the criterion item characteristic function (cf. Section V.13).

With each of Subtest 1, 2 and 3 as our Old Test, both Degree 3 and

4 Cases were applied. For the other six subtests, however, only

Degree 4 Case was adopted. The reason for the exclusion of Degree

3 Case in this later research is that, in all the previous studies,

the resultant estimated item characteristic functions obtained in

Degree 3 Case turned out to be practically identical with those

obtained in Degree 4 Case.

As we have seen in the preceding section, with Subtest 3 as

our Old Test, we used the set of modified maximum likelihoodA

estimates, T* (s-l,2;..,N) , as our basic data. With each of the

other eight subtests as our Old Test, the set of maximum likelihood

estimates, Ts , was used.

This part of the research is partly credited to the conscientious
effort by one of the author's assistants,-Paul Changas.

(VI.7) Sample Linear Regression of s on T

Figure 6-7-1 presents the scatter diagram of ability 6s

ao Original Old Tuot
0

2.0 ,

L ~1.0

90.0

CC -1.0

-2.0

-3.0o H
-M.0-2.0 -40 .O 1.0 2.0 3.0

LATENT TRAIT e.
FIGURE 6-7-1

scatter Diagro of 0 4 0iotted A-st % for

Our Five SHdred Hypotbstlcal b!zdsees, Which
_,___ .. .d UPOn the O.laftol Old Teat.

S... : •.-..•,. .• ... •..• ......... ' , ,,7
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) and its maximum likelihood estimate . for our

five hundred hypothetical examinees, which are obtained upon our

Old Test. We can see in this figure that the conditional

unbiasedness of given 0 , may approximately be satisfied.

The sample linear regression of 6 on 6 , or the best fitted

linear function of e in the least squares sense, turned out to be

1.0040 - 0.006 , which is very close to the unbiased line, or the

linear function which passes the origin with tl~e slope of L.ity.

Figure 6-7-2 presents the nine scatter diagrams of the

transformed latent trait, T (s-l2,...,N) . and its maximum
s

likelihood estimate, T , for our five hundred hypothetical

examinees, with the exception of the one for Subtest 9, in which
four hundred and ninety-eight examinees are used (cf. Section VI.5)

In this figure, for Subtest 3, the modified maximum likelihood
estimate, ,* , is used insteua n of the maximum likelihood estimate,

ASr-T . For convenience, we shall not repeat this in the rest of this
section and in Section VI.8 , but the reader must understand this is
the case. The sample linear regressions of on T for the b
seven of the total nine scatter diagrams are as follows.

Subtest 4: 1.012T - 0.004
Subtest 3: or our + 0.004
Subtest 5: 1.018T - 0.007

Subtest 6: 1.011T - 0.000

J Subtest 7: 1.016( - 0.003

Subtest 8: 1.00t0 - 0.009

Subtest 9: 1.009t + 0.013

We can see that, in all these cases, the sample linear regressions

are very close to the unbiasedness line, and practically

* indistinguishable from it.

Examination of Figure 6-7-2 reveals, however, that the

conditional normality of the distribution-of given T , May not

be approximately satisfied for some subtests. It is obvious that,

as the number of test items in the Old Test decreases, the conditional

A II

'-7>. indstngisabe ro-i.

* . , . - .-.
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distribution of g , given T , grows more and more discrete, with

the result for Subtest 9 as the climax. Also for some subtests

there are some conspicuous diversions from the normality for some

range of T , as we can see in the scatter diagrams for Subtests 2

and 4 in the vicinity of T w 0.0 . We are to see if these

deviatiois from normality visibly affect the resultant estimated

Subtest I ftbteat 2
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Ob Q0.to / to 0•
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item characteristic functions of the unknown binary test items.

M.VI8) Polynomial Approximation to the Density Function, g(i)

Figure 6-8-1 presents the two polynomials of degrees 3 and 4

which were obtained by the method of moments (cf. Section V.6) to

approximate the density function, g(b) , together with the

frequency distribution of the five hundred 'a , for each of

Subtests 1, 2 and 3 . In each of these three graphs, the Tesultant

polynomial of degree 3 is plotted by a dotted curve, and that of

degree 4 is drawn by a solid curve. Approximation to the density

fuxiction, g(T) , by a polynomial was conducted only for Degree 4

Case for each of the other six subtests, the result of which is "

shown as Figure 6-8-2. We can see in these two figures that there

are varieties of different curves and histograms. They are similar

for Subtests 2 and 4. but they are not too close for Subtests 1 and

3 , for the latter of which the modified maximum likelihood

estimate. was used instead of ; . The histogram shows

greater degrees of ups and downs as the number of test items

*• decreases, the result which was predictable from our observations

of the scatter diagrams in the preceding section. i
For comparison the reader is suggested to go back to Figure

4-1-2 of Section IV.l in which similar graphs are shown for the

Sapproximation by the polynomials of degrees 3, 4 and 5, for the five

hundred 0 which were obtained upon the original Old Test.

(VI.9) Estimated Item Characteristic Functions Obtained upon
Subtests 1, 2 and 3

As before, for the purpose of illustration, we shall take

item 6 as an example. Figure 6-9-1 presents the criterion item
characteri-tics functions (cf. Section V-13) obtained upon Subtests

1, 2 and 3, which are plotted by dotted and short, dashed curves,

and dashes and dots, respectively, in comparison with the one

"obtained upon the original Old Test and the theoretical item

characteristic function, which are shown by long, dashed and solid

'i!'
•r1
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curves. We can see that the two criterion item characteristic

functions, which were obtained upon Subtest 3 and upon the original

Old Test, are practically indistinguishable, and the one for

Subtest 3 ia also very close to them. This is a common tendency

among all the ten binary test items. In contrast to them, for the

interval of e , (-1.3, 1.6) , the one obtained upon Subtest 2 is

substantially different from the other three, and the fitness to

the theoretical item characteristic function is a little poorer.

This is not the case with all the other nine binary test items,

however. In fact, although for items 3, 5, 6 and 7 the fittiess is

poorer for the ones obtained upon Subtest 2, the order is reversed

for items 1, 2, 4, 8 and 10 . It is interesting to note that for

items with intermediate difficulty like items 5, 6 and 7 the

criterion item characteristic functions fit rather poorly to the

corresponding theoretical item characteristic functions. This

result is more or less expected from the small amount of test

II4"

.--- .1
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information of Subtest 2 in the vicinity of e - 0.0

Figures 6-9-2 and 6-9-3 present the resultant estimated item

characteristic functions of item 6 which are based upon Subtests I

and 2, respectively, by dotted curves, in both Degree 3 and 4 Cases,

t1.

i- 10 A0- 1 t . O 2 A&

!• p0.8.

g

j0.4

aU0.2I
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the Stiple SUN Procedure of the Ceeditional PD.P. Approsch ufth the aoxal
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ztes Characteristic PFunctio (.114 O•ari) Ad the Frequem•y latloo of Thoas

Ubo immrted Cowectly (Jogaed A"t Uim).
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together with the corresponding results obtained upon the original

Old Test, which are plotted by dashed curves. In the same figures,
also presented are the theoretical item characteristic function of

item 6, and the frequency ratios of those who answered correctly,
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by solid curves and jegged solid lines, respectively. It is

striking to note that these results in Degree 3 and 4 Cases are

practically identical, for the interval of e , (-2.2, 2.2) , for

both Subtests 1 and 2 . We also notice that they are very close

to the corresponding criterion item characteristic functions, which

we have observed in Figure 6-9-1. These findings are not new, but

have been observed repeatedly before, in the results obtained upon

the original Old Test. The results for Subtest 1 are practically

identical with those obtained upon the original Old Test, for the

interval of e (-2.2, 2.2). These facts are true not only for

item 6, but also for each and every one of the ten binary test

items.

Figure 6-9-4 presents the corresponding results for Subtest

2 when the square root of the test iniformation function ip

approximated by three different polynomials using three

subintervals, which is shown in Figure 4-6-3 of Section IV.6 . We

can see that the resultant estimated item characteristic functions

are very similar to those presented in Figure 4-6-2, in both Degree

3 and 4 Cases. This turned out to be true with all the other nine
binary test items: the result which indicates that the crude

approximation to the square root of the test information by the

single polynomial of degree 7, which is shown in Figure 4-6-2,

serves just as well as the more precise one obtained by the three

different polynomials.

Figure 6-9-5 presents the corresponding results for Subtest

3. We can see in this figure that the resultant estimated item

characteristic function obtained upon Subtest 3 is very close to

the one obtained upon the original Old Test, in both Degree 3 and 4

* Cases. This is a commn tendency am~ong all the ten binary test

items. The use of the modified maximum likelihood estimate, T*

certainly did not affect negatively the resultant estimated item

characteristic functions.

-7I
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(VI.10) Estimated Item Characteri~stic Functions Obtained upon the
Six Other Subtests

Figure 6-10-1 presents the resultant estimated item

characteristic functions of item 6 in Degree 4 Case, which were

obtained upon Subtests 4, 5, 6, 7, 8 and 9, respectively, by dotted

curves, in comparison with the one obtained upon the original Old

Test, the theoretical item characteristic function, and the

frequency ratios of the correct answer, which are plotted by dashed

and solid curves, and jagged solid lines, respectively. We can see

in this figure that, up to Subtest 6, the fitness of the resultant

estimated item characteristic function to the theoretical item

characteristic function is reasonably good, but, after that, it

grows flatter. This is a common tendency among all tha ten binary

test items.

Figure 6-10-2 presents the corresponding results fcr the

other nine binary test items, which were obtained upon Subtest 6.I We can see in this figure that the fitness of the estimated item

characteristi- function is really good for each of these items. In

fact, for items 1, 2 and 4 the results fit the corresponding

theoretical item characteristic function better than those

obtained upon the original Old T4st, and 'they are just as good for

items 6, 8 and 10. Considering that Subtest 6 only contains eleven

test items, compared with thirty-five in the original Old Test,

this result is outstanding. We must conclude, therefore, our

combination of a method and an approach is robust over the decrease

in number of test items in our Old Test.

It is desirable to experiment on the other combinations of a

method and an approach for estimating the operating characteristics,
than Simple Sum Procedure of the Conditional P.D.F. Approach with
the Normal Approach Method, which we used in the present study.

This must wait for futu•re research, however.

.1. S. ....... ../,,. , :•,, • ,•!• ,• , ... ,r , ,• .., .•. , I
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VII Adaptive Testing

In this chapteri we shall observe adaptive testing, or

tailored testing, in the context of latent trait theory. By adaptive

testing, we mean the testing situation in which test items are
selected for an individual examinee in accordance with the unknow~n

ability level of the examinee, from the prearranged item pool, which
consists of a large number of test items measuring the same ability,

or abilities. Thus the search for the examinee's ability level and

the search for suitable test items for him are conducted together,

aiming at estimating the examinee's ability as accurately as we wish,

without spending too much time and giving the examinees too many test

items. The efficiency in estimating the examinee's ability,

therefore, is the essential part of the adaptive testing. We canI

perform adaptive testing in the form of paper-and-pencil testing, but

the moat ef fective way may be the use of computers with screen

terminals. Latent trait theory provides us with a strong rationale

for adaptive testing, which cannot possibly be done by classical

test theory.

(VII.i) Addition of New Teat Items to the Item Pool

As was pointed out in Section 111.4, the approaches and methods

which were observed in Chapters 3, 5 and 6, for estimating the

operating characteristics of the discrete item responses are most

useful in developing the item pool. When we start from scratch, the

first step we must take is to develop a certasin number of test items

which measure the ability of our interest, to confirm their

dimensionality, and, selecting a suitable model, or models, to find

out the operating characteristics of these test items. In so doing,

we need a certain norm group of examinees to administer these core
test items to obtain the basic data, and also this process includes

the elimination of unfit teat items, or their modifications. After

this has been completed, if we wish to add more test items to our item
pool, we may develop more test items and estimate their operating

characteristics using one of our combinations of an approach and a
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method. This latter process can also be used in the situation where

an item pool is already there and has been used for a long time.

An advantage of this situation in adaptive testing is that we

do not need the transformation of ability 6 to c , which was

described in Sections 111.8 and V.3, provided that we design our

procedure suitably. This will be discussed in Section VII.5.

(VII.2) Weakly Parallel Tests

Weakly parallel tests have been introduced (SameJima, 1977b)

in contrast to strongly parallel tests in the context of latent trait
theory. Two tests are strongly parallel if:

r (1) they have the same number of itmus. and

(2) there is a one-to-one correspondence of each item on the

first test with one aud only one item on the second test with

respect to the identity of the number of item score

categories and the set of operating characteristics of

item score categories.

In contrast to that, weakly parallel tests are any pair of tests

measuring the same ability or latent trait for which the square
• ~roots of the test information functions are identical. Thus two

weakly parallel tests may have:

b' (1) different numbers of items, and

(2) no one-to-one correspondence between the two sets of test

items with respect to the number of item score categories

or to the sets of operating characteristics of the iten scores.

It has been pointed out (Samejima, 1977a) that in tailored

testing, or computerized adaptive testing, any number of weakly parallel

tests can be made by prearranging a certain amount of test information

and using it as the criterion in terminating the presentation of items

to individual subjects. In such procedures two different ftem pools

are not needed, although two item pools developed for measuring the same

i --- ------
. . . . . .. . . . . . U.. .
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ability or latent trait will serve just as well.

(VII.3) Use of the Amount of Test Information as the Criterion
for Terminating the Presentation of New Test Items

It has been comon for researchers to apply a certain degree
of convergence of the current estimate of ability obtained after each

test item has been presented, as the criterion for terminating the

presentation of new items. This procedure, however, will result in

producing different levels of accuracy of estimation at different

levels of ability, or even at the same level of ability.

For the purpose of illustration, Figure 7-3-1 presents 10
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graphs, each of which displays the process of convergence of the

maximum likelihood estimate in a simulated tailored testing

situation. The ability level of each of these 10 hypothetical

examinees is shown by a number on the ordinate and the horizontal

line. The item pool used for this simulation study consists of nine

subsets of binary test items following the normal ogive model, whose

discrimination and difficulty parameters are shown in Table 7-3-1.

tm icm TABLE 7-3-1

It*& Discrimination Paramter, a , and Item

Difficulty Parantor. b * of Each of the Nine

Groups of Binary Test Items Used as the Item
Pool in the Simulated Tailored Testing.

item
Group &

1 1.20 -2.00

2 1.60 -1.50

3 2.00 -1.00

4 1.40 -0.50

5 1.80 0.00
•,6 1.30 0.50.

a 1.90 1.50-,

9 1.50 2.00

It is assumed that each subset has a sufficiently large number of I
equivalent test items. There are two sessions for each examinee,

which are marked with hollow circles and solid triangles in Figure

7-3-1, respectively. For each examinee in each session, binary

items were selected and presented until the test information at the

current value if the maximum likelihood estimate had reached 25.0

Since the items are binary, no local maximum likelihood estimate was
obtained after administration of the first item. For Subject 1, for

instance, in the first session the first local maximum likelihood

thestimate was given after administration of the second item; and in

the second session it was obtained after administration of the fifth

item. It is clear from this figure that, in some cases, the current

maximum likelihood estimates converged well before the test

I I

. . . .. . . . . . .. .. . . .
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inform~ation reached 25.0 *whereas, in other cases, they had not

converged yet by the time the test information reached 25.0

Consider, for example, Subject 4 in the first session (hollow* ] circles) and Subject 10 in the second session (solid triangles). If

the rule is made that the presentation of new items is to be
terminated when the shift of the current maximum likelihood estimate

is less than 0.07 twioe in succession, then this will occur after

the presentation of the 9th item in the former and not until the

presentation of the 14th item in the latter. The corresponding

values of test information are 13.370 and 23.137 , respectively.

The standard error of estimation, which is the inverse of the squareI

root of test information, is 0.273 in the former and 0.208 in the

latter, i.e., approximately 76 percent of 0.273 . On the other hand,
if the rule is made that the presentation of new items is to beI
terminated when test information has reached, say, 25.0 , at that[ I current maximum likelihood estimate, as was the case here, the
standard error of estimation would be approximately the same for all
the examninees of different ability levels, i.e., 0.20 . If the

estimation of each examinee's ability with the same level of accuracyI
is desired, there w~ill be no doubt that the second rule is better

than the first rule.

as in selection, It will be possible to prearrange a desirable test

information function which is not constant for the entire range of

ablt nquestion but has a specific curve for the specific purpose.

Thistestinformation function can then be used as the criterion for

terinaingthe presentation of now items. In such a case, examinees

of dffeentlevels of ability are measured with different levels of

accrac ofestimation and yet the resulting selection will be
conducted as accurately as is desirable if the appropriate

information curve is used.

The above are only two examples of many, possibilities. In any

case, the use of test information functions as the criterion for

terminating the presentation of new items in tailored tasting permits
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control of the level of accuracy of estimation to serve the purposes

of testing; it is impossible to do so if the convergence of the

current maximum likelihood estimate is used as the criterion. The

adoption of the test information function as the criterion,

therefore, is strongly recommended, rejecting the convergence of

the current maximum likelihood estimate, which makes the accuracy

of estimation arbitrary.

(VU,.4) Test Information Function and Standard Error of Estimation

One of the many advantages of latent trait theory over

classical test theory is that the standard error of measurement is

defined more meaningfully, as a function of the latent trait e

F It is defined as the inverse of the square root of the test

information function, and is most meaningful when the test i
irformation function assumes a high enough value so that the

conditional distribution of the error t , given e , is

approximately normal. When a prearranged value of the test
information function is used as the criterion for terminating the

presentation of now items in adaptive testing, however, consideration1

must be given to the relationship between the test information

function and the standard error of estimation. Figure 7-4-1 presents

this relationship.

As can be seen in this figure, the latter is a strictly

decreasing function of the former; yet the amount of decrement in

the standard error of estimation is conspicuous for the initial
increase of the test information function. It is more or less

stabilized, however, after the test information function reaches

* 20.0 . For instance, for 1(e) - 6.25 the standard error of

estimation is 0.4 ; this becomnes 0.2 , i.e., one-half, when

1(6) - 25.0 . On the other hand, to make the stanidard error of

estimation one-fourth of 0.4 , i.e.*, 0.1 , the test information

must be 100.0 . This suggests that, in adaptive testing, we must

balance the increase in the number of test items with the decrease in

the standard error of estimation, and find out a suitable criterion.

7 ~T.T~h. :~----- .- :7c--;7-7--
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h FIGURE 7-4-1

Functional Relationship between TUst Information Function and Standard
Error of Estiation.

;I

(VII.5) Old Test for Item Calibration

It should be noted that, in adaptive testing, we can prearrange

the target square root of test information, and use the functioii as

the criteria for terminating the presentation of new items to

individual examinees. This target function does not specify a single

subtest from the item pool, but it provides us with a set of different,

individualized subtests. If we repeat this process, we will obtain

more than one such set of individualized subtests, which are weakly
parallel to one another. We notice that, in spite of this difference,

we may use such a set, or sets, of subtests as our Old Test, in

estimating the operating characteristics of the discrete item

responses to new test items, with the prearranged square root of the

"test information function for the interval of ability of our interest.

This is a remarkable characteristic of the approaches and methods

- '7.... 777
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developed in the present research, when they are applied to the

adaptive testing situation.

It should also be noted that, because of this characteristic,

there is no need for us to transform ability 8 to T , since we

can prearrange a substantially large constant value for the target

square root of the test information function for our Old Test. The

process of estimating the operating characteristics for new items

becomes, therefore, much more simplified than the one we must use -

V• when our Old Test is a fixed test, since, under the ordinary

circumstances, it is extremely difficult to develop a fixed test

which has a constant amount of test information for the range of

ability of our interest.

(VII.6) Adative T stin n& Graded Test Items

With the consideration described in P..rlier sections, a

hypothetical tailored testing situation was constructed, using six

different item pools. The first item pool consists of eleven types

of graded items, each of which had four graded item score categories.

Each item follows the normal ogive model, which is given by (3.6)

and the three difficulty parameters, bX for x 1,2,3 , for each of

the eleven types of graded items are presented in Table 7-6-1. The

TABLE 7-6-1

Three Difficulty Parameters for Each oi the
%loven Types of Graded Test Item Which Are

Comon to the Three Different Item Pools.

- rItes ,x.1[ x.'2 x.g 3

1 -3.0 -2,5 -2.0

2 2*25 -2.0 -1.5
3 -2.0 -1.5 -1.0
4 -1.5 -1.0 -0.5
5 -1.0 -0.5 0.0
6 -0.5 0.0 0.5
7 0.0 0.5 1.0
8 0.5 1.0 1.5
9 1.0 1.5 2.0

10 1.5 2.0 2.5
11 2.0 2.5 3.0

"-?- - .........-- ..... •• . ...-
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discrimination parameters, a ,for these eleven types of items are
g

uniformly 1.0 . The second item pool also has eleven types of

graded items with the same number of item score categories and values

of the difficulty parameters, but the common discrimination parameterl

a is 2.0 instead of 1.0 . The third item pool is the same as

the first and the second, except that a. M 3.0 . The other 3 item

pools are identical to the first set of 3 item pools, except that

the items are binary items and the difficulty parameters are those

shown in the column indicated as x -2 in Table 7-6-1. It is

assumed that in each item pool, there are a substantially large number

of items of each type.

The criterion square root of the test information was set as

[1(631/2 4.65 , the same constant which was used in our original

Old Test. This value can also be considered as the reasonable

compromise suggested in Section VII.4 . The standard error of

estimation is approximately 0.215 . One hundred hypothetical

subjects were used in each tailored testing situation. Their ability

levels are -.2.475 through 2.475 with an interval of 0.05 , i.e.,

the same set of one hundred ability levels as we used before (cf.I

Section 111.3). In each pair of adaptive testing situations in which

the same discrimination parameter was used, the some useed number was

used to produce the same sequence of random numbers. The first item

presented to every subject was item 6, which is the item with

intermediate difficulty. If the subject's Item score was 0 , then the

easiest item, item 1, was presented repeatedly until an item scoreI
other than 0 was obtained. If the subject's score on item 6 was 4
then the most difficult item, item 11, was presented repeatedly until

an item score other than 4 was obtained. After that, the tentative

maximum likelihood estimate was computed, and the computer presented

an item for which the amount of test information was greatest at that

value of $ . This process was repeated until the square root of the

test information function at the current maximum likelihood estimate

reached the cxiterion, 4.65
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Tables 7-6-2 through 7-6-4 present the frequency distributions

of the number of items needed for the hypothetical tailored testing

for individual subjects with the criterion 4.65 in each of the two
situations, for a - 1.0 , 2.0 and 3.0 , respectively. A substantial

difference between the two freqtiency distributions are observed. The

mean number of items is 36.92 for the binary case and 27.98 for

the graded tase for a. = 1.0 , indicating that only 75.8 percent of

the items were necessary in the graded case as compared to the binary

case, These numbers are 11.97 and 7.88 for the cases where

-a M 2.0 , and 7.38 and 4.56 where a - 3.0 , and the

corresponding percentages are 65.8 and 61.8 for these two pairs,

respectively. This result indicates the high efficiency of the

graded test items in adaptive testing, in preference to binary test

items. This is especially true when we have large values for the

discrimination parameters.

TABLE 7-6-2

7raquancy Diatribution of the Utsber of
Items Used in Rypothetical TailoredTesting. %s - 1.0

Sof Itm Blnary Graded

27 1528 74
29 10
30
31 1332

33
3'
"35 1
36 46
37 31
38 9
"39 4

i•Total 100 100

meow___ 36.92 27.98

LI
•,~
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TABLE 7-6-3 TABLE 7-6-4

Frequency Distribution of the Number of Frequency Dietributlon of the Number of
Item Used in Hypothetical Tailored Items Used in Hypothetical Tailored

Testing. a a 20 . Teeting. a. - 3.0

Number Number Binary Graded
of Items of Itey a

7 21 3 16

8 70 4 15
9 9 5 2 66

10 1 6 2 3
11 26 7 55
12 54 8 36
13 10 9 4
14 3
15 1
16 Total 99 100
17

18 mean 7.38 4.56

Total 96 100

meoan 11.97 7.88

(VII.7) Bayesian vs. Maximum Likelihood Estimation in Adaptive
Testing

As we have observed in Sections V1.1 and VI.2, the use of

a prior in ability estimation provides us with biases which we may

wish to avoid.

In adaptive testing, it is typical for researchers to use a

normal density function as the prior. Figure 7-7-1 presents four
functions, i.e., the standard normal density function, n(0,•)

(solid line), and three approximations to n(O,l) . Each of these

three approximations is the product of two functions, P (6) and

[I-P (e)] , which are given by the normal ogive functions such that

a(O-bi)

* (7.1) Pi(e) "".-.L eu/2 du

and

-- -- ------ --
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FIGURE 7-7-1

Cosparison of Throe Approziuationa vith, the Normal Density
Function, n(0,1) (Solid Line). Those Approximations Are the

Products of a Normal Ogive Function and Another Subtracted
From Unity, Which Equal n(O,l) at 0 - 0.3 (Dotted Line),

0 - 0.6 (Broken Line) and 6 - 0.9 (Dashed Line),
Respectively.

, f~aj (6-b ) 2

(7.2) - e- du ,

aj and bi - -bj . These two parameters, ai and b,

are 0.94810 and -0.35454 for the function drawn by a dotted line

in Figure 7-7-1, 0.94980 and -0.35391 for the one drawn by a

broken or long, dashed line, and 0.95259 and -0.35287 for the

one drawn by a short, dashed line, respectively. These three

Sap p r o x i m a t i o n s a r e o b t a i n e d b y s e t t i n g t h e p r o d u c t o f t h e t w o
Sfunctions equal to the standard normal density function at 0 - 0.3

8 - 0.6 and 6 - 0.9 , respectively, in addition to 6 - 0.0 . We

notice that these four curves, including n(0,l) , in Figure 7-7-1

are practically indistinguishable.

We notice that the formulas in (7.1) and (7.2) are identical iSwith the item characteristic function in the norm&). ogive model. This

implies that the prior, n(0,1) , is practically the same as the

product of the two operating characteristics of the hypothetical
binary items, i and J , for the response pattern, (1,0) . The I
Bayes modal estimator with the prior n(0,l) can be considered,

therefore, as the maximum likelihood estimator, obtained from the

"JW
m " -- l , ..... ... . ..
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response pattern V plus two additional resoonses, 1 and 0,

to the hypothetical binary items, i and J. Note that these two

additional item responses are always 1 and 0 , regardless of the

true ability level.

In order to observe how the prior affects the resultant ability

estimation in adaptive testing, a simulation study was conducted

(RR-80-3) by using the hypothetical item pool, which was described in

* Section VII.3 . We assume eleven hypothetical examinees, whose ability

* levels are -2.25 , -1.75 , -1.25 , -0.75 , -0.25 , 0.00 , 0.50

1.00 , 1.50 , 2.00 and 2.50 , respectivtely. We also assume four

different situations, in one of which the maximium likelihood

estimation is applied for the ability estimati.on, and in the other

three Bayes modal estimation is used, with three different priors,

n(0.0,1.0) , n(0.0,0.8) and n(0.0,0.5) , respectively. in the

first situation of maximum likelihood estimation, an item from group

ji I 5 is always chosen as the first item to present to an examinee, and,
- depending upon the examinee's response to this item, the second item

is chosen either from group 1 or group 9. That ia to say, if theI

examinee's response to the first item is correct, then the second item

-* is chosen from group 9. i.e., the most difficult item group, and, if

7 it is incorrect, then the second item is chosen from group 1, the

for the following items, until he fails in answering an item correctly

if it is group 9, and until he succeeds in answering an item

correctly if it is group 1. Thereafter, since every current

likelihood function has a local maximum, an item from the item group

whose item information function, 1 (0) , which is defined by (3.9)

is the greatest at the value of current maximtum likelihood eatimate

is chosen and presented next, and this will go on until the amount of

test information at the current maximum likelihood estimate reaches

or exceeds a certain criterion. All the responses of the
hypothetical examiinees are calibrated by the Monte Carlo method.

In Bayesian estimation, the first estimate is the modal point

of the prior. The second item is an item chosen from the item group
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whiue item information ftuitLion, 1 (0) , Is the ,rentueat at thO'

modal point of the prior, and the third item is from the item group

whose item information function is the greatest at the gurrent

Bayes modal estimate, and so forth, and the presentation of a new

item is terminated when the amount of test information at the

I.. current estimate of the examinee's ability has reached the same

criterion used in the maximum likelihood estimation.

"Figure 7-7-2 presents the results of these two ability

estimations, which were obtained by using the prior, n(0.0,0.8) ,

and without using any priors, by solid circles and solid triangles,

respectively. In this figure, e - 0.0 , and the prior did not

interfere with the convergence of the ability estimate. In contrast

.2.0

FIGURE 7-7-2

Successive Mazimum Likelihood Eatimates (Trian$laa) and Bay*& Modal Estimates
(Circles) in the Simulated Tailored Testing with n(O.O,O.8) as the Prior for

a Hypothetical Izamine Whose Ability Level in 0.00

to this result, Figure 7-7-3 presents another case in which e - -2.25

In this figure, substantial differences between the two processes of

the inaximum likelihood estimation and the Bayes modal estimation are

observed, in the latter of which the convergence is much slower,

fighting off the effect of the prior. These two examples typically

illustrate the bias caused by the prior.

"2:! I

TTi'l7Ij
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iO!L
a1.0

U I" -1.0

•!iFIGURE "7-71-3

Successive Mauimi Likelihood EStimatos (Triaangls) and layes Modal Eatimates
(Circles) in the Simulated Tailored Testing vith n(O.OO.S) Sath* Prior for

a Hypotheticol •iaminee Whose Ability Level is -2.25.
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VIII Constant Information Model

Researchers get interested in finiding out what kind of test

item provides us with a larger amount of information in comparison

with others. They seldom pay attention, however, to the fact that

there exists some constancy in the amount of item information. In

this chapter, we shall observe such aspects of information functions,

introduce a new model for the binary test item, which is called

Constant Information Model, and discuss its practical implications

p'. I and usefulness in the estimation of the operating characteristics
of discrete item responses.

(VIII.i) Constanc of Information under the Transformation of the
Latent Trait

Let T be any strictly increasing transformation of ability

8 . The relationships between the two sets of information

functions, i.e., I (0) , 1.,(6) , 1V(0) and I(e) versusSgV.
1* (1) , I*(T) , I*(T) and I*(T) , have been given in Sectionx g

111.8 , while the original definitions of the first set of

information functions are given in Section 111.4 . It should be

noted that the area under the curve of the item information function,

and that of the test information function, do change with the

transformation of ability 6 to T , since there are such

relationships that

dQ
(8.1) J *(T) dT I s(e) - de

and

_. de

•:.~~~~~~~~~~~~~~~ Th r n r h o e n p e n p i t f t e r n e o

where 6 and eare the lower and upper endpoints of the range of
8 and

44,.
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(8.3)
I (C )

are those of the range of the transformed variable T

If we consider the integration of the square root of each

information function, however, we obtain

(8.4) [1*(T)]i 2 d- -I[e] 1 /2 do

and

(8.5) [I*(.)]I/ 2 dr - [d())]12 d@

Thus the area under the curve of the square root of the item
information function, and that of the test information function, are

unchanged throughout the transformation of the latent trait by any

strictly increasing function, v(O)

We recall that ability 6 was transformed to T by the

polynomial given by (5.13) when we used one of the nine subtests

of the original Old Test, ie., Subtests 1 through 9, as our Old

Test (cf. Section VI). The above fact implies that, in so doing,

the totality of the square root of the test information function

of our Old Test was kept constant.

(V.II.2) Constancy. of Item Information for a Specified Model

The finding in the preceding section can be generalized further

to the constancy of the square root of the item information function

for items which follow the same model, as long as the set of operating

characteristics for an arbitrarily selected test item which belongs

to the model can produce one for any other test item which follows the

same model. To give an example, suppose that item g has an item

characteristic function in the normal ogive model, such that

................... ,t
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,,!: , /a_•g(0-b)

(8.6) P ( [2w 1-1/ 2  ( exp[-t 2 /2) dt

where a8  (>0) and b are the item discrimination and difficulty

parameters, respectively. Suppose that we wish to transform ability I:
0 to T by the linear transformation such that

(8.7) "c a (-b) a* + b*
g 9 g

where a* is an arbitrary positive constant and b* is any constant.
g 8

We can write for the item characteristic function, P*(T) , of item

g resulting from the transformation of e to r

a (T.-b*)
(8.8) P*(¶) - [2n)l/2 _ expa-2/

It is obvious that P*(Q) thus obtained belongs to the normal ogive

model. From the finding obtained in the preceding section, therefore,

the constancy holds for the totality of the square root of the item
S. ~information function over the transformation of 6 to T . Note that.

this is true for any arbitrarily chosen values for a* and b* , as& g
long as a* is positive. Let h be any other binary test item

which also follows the normal ogive model. We can write

(8.9) P -0 E2wF"2 f]( exp[-t 2 /2) dt*

If we set a* - ah and b* - bh , then (8.8) provides us with an
identical curve with that of (8.9) . The area under the square root
of the item information function, I(T)/2 therefore, will equal

that of [Ih(e ./2 The constancy of item information holds over

any binary test items which belong to the same model, i.e., the normal

ogive model.

For the purpose of illustration, Figures 8-2-1 and 8-2-2
present the item information functions and their square roots for.

three items, all of which belong to the normal ogive model with

/ ;I

__ _ __,__ _i
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FIGURE 8-2-1

Item Information~ Functions of Threa Binary Items, Wdhich followa the Normal Ogive
Model, with the Common Difficulty Parameter, b1  b2 -b 0.0 , and the

Discrimination Parameters, a~ 1.0 (Soli Curve), a2  2.0(Dte

Curve) and a~ 3.0 (Dashed Curve), Respectively.

~3.3

0

b 2-

FIGURE 8-2-2

Sqar Rot fteI IfrainFnt onOf ThreeBiayIesWhc
Folow heNoral gie Mdel wth heCoumme Difficulty Prmtr

b, a b3 a 0.0 , and the Discrimination Parameters, a, 1.0
(Solid curve), £2a 2.0 (Dotted Curve) and a3  3.0 (Dashed

Curve), Respectively.
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iii

a 1.0, a2  
2 .0 and a 3.0 ,and b b 2  b 3  0.0

respectively. We can see that in Figure 8-2-1 the three areas are

substantially different from one another, while those in Figure 8-8-2

are equal.

(VIII.3) Constancy of Item Information for a Set of Models

In this section, we only consider binary test items. Consider

:a set of test items which follow different models, but whose item

characteristic functions are strictly increasing in 8 , and satisfy

(8.10) rim Pg(8) 0 0

lim
iP (0) 1 1

6+0 g

Let h denote another, arbitrarily chosen test item which follows

a different model, which satisfies the above two conditions. The

transformation of 6 to v in such a way that

(8.11) T'= Ph -l[P(e)]h 9i

provides us with the item characteristic function, P*(r) , for item

g with respect to the transformed latent trait T , which is

identical with P (6) . The constancy of item information holds,
b

therefore, for item g and item h on the ability scale 8 , in I
spite of the fact that they belong to different models.

Figure 8-3-1 illustrates the square roots of the item

information functions of three binary test items, g , h and j ,

which follow the normal ogive model, the logistic model and the

linear model, respectively. The item characteristic functions of

item h and j are given as follows.

(8.12) Ph(0) [1E + exp{-Da (6-bh)) < 0 <

(8.13) P t() - ( a-a) (-)-l a < .

i,7`

- -- *, . i
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FIGURE 8-3--1

Square Roots of the Item Information Functions of Items s, h and j, Which Follow
the Normal Ogive Model with a. 1.0 and ba- 0.0 (Dotted Curve), the Logistic

Model with D - 1.7 , a- 1.0 and b 0.0 (Solid Curve) and the Linear

Model with a . -2.5 and 8 * 2.5 (Dashed Curve).
j j

The reader is directed to Chapter 3 of RR-79-1 for the relationships

~I among these three models.

It should be noted that the same principle holds for any other

sets of models, each of which has common characteristics of its own,

as the present set of models has the strictly increasing property in
' item characteristic functions and the satisfaction of (6.10) . It

will be improper, however, to consider a set of models for which the

item information function is meaningless, like the type of the
three-parazater logistic or normal ogive models, for the reason the
author has pointed out (Samejima, 1973).

(VIII.4) Exact Area under the uSquar Root of the Item Information
Function

We notice that the common area under the square root of the

item information function for all the binary test items, whose item

characteristic functions are strictly incr'easing in 0 and satisfy

(8.10) , -an be obtained by integrating [Ig(0)2I/2 for any

arbitrarily chosen item g . This area equals ir , or approximately

3.14159 . The following process is an example, in which the

I-- --- ----
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logistic model has been chosen,

31/2 31/2
(8.14) [1(de - Dah lexp{Dh(O bh) 2

,[1 + exp{D%(-bh)}-1 dO

(8.15) e*- [exp{Da(6-bh)}]1/2

(8.16) - 2 (Dahe-1 .

1r~ /2 f0*(1+0*2)2(%-18

(8.17) (1h(G)]I d e D. a, d6*

iff:
-25 (l+6*2)1 dS* 2 a- 2 ~

000 0

It will. be just as easy to demonstrate it if we choose the linear

-model instead of the logistic model (cf. Chapter 4, RR-79-1).

(VIII.5) Constant Information Model

To represent the type of models which satisfy the two conditions

described in Section VIII.3 , we shall consider a model which provides

us with a constant value for the square root of the item information
if ~~function for the interval of e _0e Let g denote such a

binary test item. It is obvious that the interval, , is a

finite interval, since the area of the rectangle given by this interval

* and the constant square root of the item information function, C , is

a finite value, i.e., t . Thus we can write

-•,(8.18) e - e'= .

Thus the length of the interval of e depends upon the constant item

information C

We find that the model described by

(8.19) Pg () - sin2 [ag ( + (n/4)]

*1

TO . ¾ ~ T T i Y*'<~
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is the one we have looked for, if we set the parameter a such that
g

(8.20) a C/2

with the range of 8 such that

(8.21) C-ira /43 + b , < ,La /43+ bg &g

Since we have

(8.22) Qg(0) - 1- P (e) cos 2 ag (6-bg) + (ir/4)3

and

(8.23) P pe) 2 sin [a (0-b ) + (n/4)].

cos (a g(-b ) + (7r/4)]-ag

- 2 a [P (O)Q (0)31/2
gg g

.1/2
C c P (ONQ (01]

we obtain

(8.24) Ig(e) - C- Pg(e)] 2 [Pg(0)Qg(0)3- -C

"We can see from (8.19) that this model provides us with point

"symmetric item characteristic functions with (bg, 0.5) as the point

of symmetry, just like the normal ogive model, the logistic model and

the linear model. The parameter b can be called, therefore,
g

difficulty parameter, just as in the normal ogive and logistic models. j
It is obvious from (8.23) that the parameter a is proportional

9to) the slope of the line tangent to P (e) at 6 - b , just as in

these two models, so it can be called discrimination parameter. The

meaning of this parameter is more obvious In (8.20), i~e., the fact

--• . .. -..-• . . ---• . -.- 7 ,-. - . . .,--.,..-... •.. .
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that the amount of item information solely depends upon the parameter

a
g

We shall call this model, which is presented by (8.19), the

Constant Information Model. This model has an important role in the

estimation of the operating characteristics of item response

categories, which will bL. described in the following section. ,.

Figure 8-5-1 presents a few examples of the item characteristic

10

08

lu

Q12.

21.0 __

1' -0 -toW 1

FIGURE 8-5-1

Its* Characteristic ru.ctiama (Uper Orark) and the Item intonation Fuatioti
(Lower Graph) of live Bimiary Item Tollovint the Constant Intonation Model.

The Ite A w 0.00 a Dte)

2 0.50 cad 0.50 (Sborter Dashes), a 0.75 and

IiI b3 - -2.00 (Lre os,%a10 n I i

Dh •e:•ashers, and asI -02.0 an od bs 0.50 (OldLn).le o)

:7e

____- ___.________________)_______ :O4d E- -I5 (.m•
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function of the Constant Information Model, together with the

corresponding item information functions.

The item response information function, I (0) , in the
x< ', g

Constant Information Model can be written as

(2 2see 2s a (_-b g)(/4)] 2a2 [Qg (0)] > 0
g g g 9 for x 0• (8.25)x i 9O- )+T/) 2a2 2 2[P (W)-1X 8  "2a csc [ag(e-bg+(/4] - 2aa

9 9 9 g for x - 1

Figure 8-5-2 illustrates these two item response information functions

for an item with the parameters, ag 0.25 and bg 0.00 , together

with the constant item information function 0.25) From (3.12)

=0

! to40 SI I

, I

041 W , - -t0 W to &0 4.0
i •.ATROOT TVWT 0

•" FIGURE B-5-2

Itam Re*Ponse informatlion Funct~ions of &a Itemn Followilng the constant:
,• Iformationm•t Model, wit~h tePrba ,met~ers. ag 0.25 and bI - 0.00
!!.. i.'" I for: x-0 (Do~ttd Cur've)and for' x-1 OolW Curve)! Tog!ethesri

•.*. . •rwit~h the Constant• It"m I.nform ,:atio Funt ion (Dashed Curve).,:

S A, -7
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and (8.25) we can write for the response pattern information function

(8.26)' 1V(8) -2 E a 2 [P (8)]) 8Q g(o)] a
V. . gV gg

and, finally, the test information function is given by

S~n

(8.27) 1(6) = 4 E a 2
g1l g

(VIII.6) Use of Constant Information Model for a Set of Equivalent
Test Items Which Substitutes for the Old Test

In our combinations of a method and an approach, we need Old

Test, or a set of test items whose operating charactersitics are
* known (cf. Chapter 3). In some situations, however, we may lift

this restriction, with the effective use of Constant Information

Model,

Suppose, for developing the new item pool, a substantial

number of test items are administered to a substantial number of

examinees, and there exists a subset of equivalent binary items

among these items. In this situation, we can use this subset of

Ititems as the substitute for the Old Test ,

m It has been shown by Birnbaum (Birnbaum, 1968) that, when

the test consists of n equivalent, binary items, the simple test

score t , which is the sum total of the n binary item scores, is

a minimal sufficient statistic for the response pattern V In

such a case, we have j
(8.28) t - nP?(f) (1)

and the maximum likelihood estimate 8 is given by

(8.29) 6- P-l t) , I

When this common item characteristic function follows the

'Ti
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Constant Information Model, we obtain from (8.19) and (8.29)

1 /
(8.30) 0- a [sin' (t/n) ./2(/4)3 + b

g g

It is obvious from (8,21) and (8.30) that the range of 0 is

" given by

-1 1.. (8.31) ]-wa + /.b < [7ra -I4]+b

We assume that these equivalent items have a strictly increasing

item characteristic function with 0 and 1 as its two asymptotes.

As we have seen in previous sections, we can adjust the latent trait

I !scale in such a way that the resulting common item characteristic

function for these equivalent items follow the Constant Information
V• i 4 Model, which is given by (8.19) . Then the response pattern of each

examinee with 'espect to the subset of equivalent binary items is

specified, and is summarized in the form of teat score. The origin

ýV and unit of the latent trait are set more or less arbitrarily, say,

aa - 0.25 and b - 0.00 . From the test score of the subset of

equivalent binary items, the maximum likelihood estimate of the

examinee's ability is obtained through (8.30) . The resulting set

of the maximum likelihood estimates tor all the examinees can be used

"in the same way as we use the set of maxLimum likelihood estimates

obtained from the results of the Old Test. The operating characteristics

of each of the other items can be estimated in the same way as we do

when we use the Old Test. After this has been done, we can transform

the latent trait in whatever way we wish.

u(VIII.7) Hlow to Detect a Subset of Equivalent fin y Items

A natural question is how to detect a subset of equivalent

binary items out of the tentative item pool. In empirical sciences,

it Is often difficult to obtain a sufficient evidence. The second

best way will be, therefore, to formulate a set of necessary evidences,

and to check our data with respect to eacb criterion. If we find

7,,777

1. . -
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out that our data satisfy all the necessary conditions thus formulated,

then we can assume that we have obtained what we wanted, until another

necessary criterion becomes available and our data fail to satisfy it.

In our situation, first of all, it is necessary, though not

sufficient, that the proportions correct should be the same value for
all the equivalent binary items, with the allowance of sampling

fluctuations. This can be checked easily, and we can find out a group

of binary items which satisfy this condition, if there is any. It is

also necessary that the 2 x 2 contingency; tables of the bivariate

frequency distributions should be symmetric and identical among all

the pairs of equivalent binary items, within the allowance of sampling

fluctuations. This can be checked for every pair of binary items

which have passed the first selection, and, possibly, some items have

to be dropped. We can go ahead to the 23 contingency tables after
this step, to the 24 contingency tables, etc., if we wish.

Unlike the common belief in high discrimination power, it is

desirable that these equivalent items have a low common discrimination, in

addition to being substantial in number. A necessary condition for this

is that the two frequencies for the response patterns (0,1) and

(1,0) , which are, theoretically, the same value if the two items are

equivalent, should be large, or compatible to the other two. This can
L,, be checked, therefore, in the same process for checking the equivalency

of the binary items. Table 8-7-1 illustrates two typical 2 x 2

Low Discrimination Paramater Nigh Discrimination Parameter

Itsm h xh-, 0 .hl. 1 Total It Xs - 0 h - 1 Total

X M 0 110 243 353 z -0 300 53 353
B S

x - 1 248 399 647 a 1 58 589 647

Total 358 642 1000 Total 358 642 1000

TABLE 8-7-1

Two Typical 2 x 2 Contingency Tables for a Pair of
Equivalent Items with a Common Low Discrimination

Parameter, and for Those with a Common High
Discrimination Parameter, Respectively

.•,7
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contingency tables, one of which is for a pair of equivalent binary

j items which have a common low discrimination parameter, and the other

is for a pair of those which have a common high discrimination

parameter.

(VIII.8) Convergence of the Ccnditional Distribution of the
Maximum Likelihood Estimate to the Asymtotic N
When a Test Consists of Equivalent Items

In using the generalized method, we should be aware of a few

problems. First of all, the constant test information provided by
the subset of equivalent binary items following Constant Information

Model should be substantially large, so that the normal approximation

for the conditional distribution of § , given 0 , should be

r I acceptable. On the other hand, we need a substantially wide range
of ability 0 for which the test information is constant, in order

j ~to make the estimation of the operating characteristics of the other
items meaningful. These two are opposing factors, as is obvious

, •, from (8.20) and (8.21) . The solution for this problem is to use

a substantially large number of equivalent binary items, whose common

discrimination parameter is low, as was mentioned in the preceding section.

Another problem is the effect of the range of 6 on the speed

of convergence of the conditional distribution of 8 , given 0
Sto the normal distribution, N(8, (n12C1). Since the range of

is a finite interval which is given by (8.31), it should be expected

"that the truncation of the conditional distribution makes the

convergence slow around the values of 6 close to (-ia-1 /4)+b 8  and

(ra i/4)+b , as is illustrated in Figure .8-8-1. A solution for this

problem is again to use a set of equivalent binary items whose coutnon

discrimination parameter is low, so that the range of 8 is wide
enough to include all the examinees far inside of the two endpoints of

the interval of 0 . An alternative for the above solution is to

"exclude examiniees whose 0 's are close to (-wa 1 /4)+b or
1 g

*I (raei/4)+b In the second volution, however, the number of examinees

g g
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will be decreased and this may affect the accuracy of the estmatione
i"of the operating characteristics. It is worth noting that the solution

for the first problem, is also the solution for the second problem.

If there exist more than one subset of equivalmnt binary items

within the tentative item pool, we can make a full use of all the

subsets. We follow the process described earlier for each subset of

equivalent binary items, and the resultant estirmated operating

characteristics can be equated by appropriate transformations of the

separately defined latent traits, using, say, the leaat squares

principle, to integrate all of them into one scale.

i14) + b ......... ........

"" I

i~ ~ ~ ~ ~~~~~~-W -'s1/4) + b ... '............

(-ei4 + b$ b (It,& -/4) + bs

•.',:LATENT TRAIT 0

4 4

.. ,,FIGURE 8-8-1 !

s••[ Gr'aphical Illustration of the Conditional Density Yuncti•ous

of the Maximum Likelihood Extinsts G iven then Latent

••'In order to pursue the process of convergence of the conditional

-•'!distribution of the maximum likelihood estimate, given ability, to

•, ?the asymptotic normality when a test consists of n equivalent,

binary test items, a Monte Carlo study was conducted (cf. RR-79-3).

"4 "7
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"For the common item characteristic function of the hypothetical

equivalent, binary items, Constant Information Model with the

parameters,

(a g 0.25
(8,32)

was used. The interval of e for which the item information

function assumes a positive constant is given by

(8.33) - i < e < ir

and we have for the amount of item information

(8.34) 1 0.25

As the fixed levels of the latent trait 8 , eight positions

were selected, i~e., -3.0 , -2.2 , -1.4 , -0.6 , 0.2 , 1.0 ,

1.8 and 2.6 . A group of one hundred hypothetical examinees were

aasigned to each of the eight levels of ability 0 , to make the
V ttotal number of hypothetical examinees eight hundred. There were

twenty hypothetical sessions of testing, and in each session tent equivalent, binary items were administered. An item score
X( 0 or 1) was calibrated by the Monte Carlo method following

the Constant Information Model. After the completion of each session,

the cumulative test score t was computed for each of the eight

hundred hypothetical examinees. Thus after the completion of the
k-th session the full test score is 10 x k . The maximum likelihood

estimate • was obtained by

(8.5)W -1
'(8.35> [t/(lOk)]

- 4 sin'l{[t/(lOk)] 1 /2} - f

for each hypothetical subject, after the completion of the k-th

session. As an example of slow convergence, Figure 8-8-2 illustrates

t/ I ,
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the resultant cumulative frequency ratios of the maximum likelihood

estimates of the one hundred hypothetical examinees of group 1 by

step functions, along with the normal distribution functions,
N(o,{I(e)}- ) , which are drawn by solid curves, after the

completions of Sessions 9, 10, 11, 12, 17, 18, 19 and 20

respectively. In the same figure, also presented are the

corresponding norwal distribution functions with the sample mean

and standard deviation of 6 as the two parameters, by dotted curves.

We can see in this figure that the two normal distribution functions

are still distinctly apart, even after all the twenty sessions.
Figure 8-8-3 presents the corresponding set of results for

Group 5 , as an example of fast convergence. We can see in this

figure that the approximation is good enough even after Session 9

For the details of this study, the reader is directed to the research
report, RR-79-3

I!
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IX A New Family of Models for the Multiple-Choice Test Item: I

In this chapter, we shall start summarizing the rationale and

findings of the part of the research, a new family of models for the

multiple-choice test items, which relates to one of the main objectives

of the present study. In so doing, we shall introduce the study which

the author conducted in Tokyo, Japan, with the collaboration of

Japanese researchers, including Dr. Sukeyori Shiba and his group of

"eductional psychologists and Dr. Takahiro Sato and his group of

educational engineers. For simplicity, in this and next chapters,

the research will be referred to as Tokyo Research.

(IX.l) Mathematical Models and Psychological Reality

Psychometricians pursue methodologies to the extent that some

specific, narrowly focused topics may become their life works. This

phenomenon is well exemplified in the large number of papers published

in Psychometrika, which are focused upon various specific topics of
factor analysis. Although it has its own merits, if we are soley

satisfied with this type of research, we may overlook a more important

aspect of research, i.e., psychological reality. Consequently, our

work may not contribute to the progress of science to a great extent.

Mathematical models have played an impottant role in psychology

as an science. The validation of mathematical models with psychological

reality has attracted less attention from researchers, however.

Needless to say, a mathematical model is nothing unless it has a sound

rationale to represent our psycholcgical reality, and, consequently, we

shall be able to design and organize our research to obtain, without

distortions, meaningful findings and future directions. Researchers'

conscience preassumes the virtue of doubts. We cannot emphasize enough

that the soundness of the rationale behind any mathematical model and

its fitness to our psychological reality are by far the most important

to our research. For this reason, the author has developed various

methods and approaches for estimating the operating characteristics of

discrete item responses without assuming any mathematical forms (cf.
Chapters 3, 5 and 6). When we are not certain, we may approach the

!T
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subject withour assuming any mathematical models.

(IX.2) Three Parameter Logistic Model

Three-parameter logistic model (Birnbaum, 1968) has been widely

used for the multiple-choice test item among psychometricians and other

researchers in mental measurement. The model is based upon the knowledge

or random guessing principle, i.e., the examinee either knows the answer, U
or guesses randomly ard picks up an arbitrary alternative. Let T (e)
be the item characteristic function in the logistic model, which is

given by (8.12). The three-parameter logistic model is defined by the

item characteristic function such that

(9.1) P g(e)- (-C) (o)+ Cg

where cg is the third parameter, which is called the guessing parameter.

In spite of the popularity of the model, very few researchers have tried

to validate, or invalidate, the model with their own data.
It is common among experienced test constructors to include wrong,

but plausible, answers among the alternatives of a multiple-choice item,

which are called distractors, so as not to make its correct answer too

conspicuous and destroy the quality of the question. It is noted that

we need some higher mental processes other than random guessing to
recognize the plausibility ot a distractor, and to be attracted to it.

It is contradictory, therefore, to apply the three-parameter normal

ogive, or logistic, model for multiple-choice items with such distractors,
although many researchers seem to like the model.

The third parameter of the three-parameter logistic model, c,
is often called pseudo-guessing parameter, and its estimate tends to

be less than unity divided by the number of the alternatives (e.g.

Lord, 1968). This fact itself is the invalidation of the model, although

many researchers do not admit it. It is apparent that something other
than random guessing is included in our psychological reality, which

makes us choose wrong answers in preference to the correct answer.

4
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Some. other model, or models, is desirable which fits our psychological

j reality better.

(IX.3) Tokyo Research

*, in the summer of 1979, the author spent a few weeks in Tokyo,

, 1 Japan, with the support of the Office of 'aval Research, and had

* conferences with researchers in Japan. The scientific vonograph

published in 1980 (ef. Chapter 2), with the help of Dr. Rudolph J.

,Marcues, Scientific Director of the ONR Tokyo Office, is based upon this

research. The researchers with whom the author had conference include

Dr. Takabiro Sate and Dr. Sukeyovi Shiba. The author had two more

opportunities to have conferences with them in the summers of 1980 and

!', 1981 . Among others, Dr. Shtba and the author started a long term

collaboration in •research in 1979 , which concerns with h'is word

I ,comprehension tests, and mathematical. models for the multiple-choicu

!: ' test items. Tt will eventually incorporate the author's methods and

approaches for estiniating the operating characteristics of the discrete

item responses in a large scale of eMpirical study.

In Section IX.4 , a brief introduction to Sato's research on

Index k will be made, Shiba's research and his word comprehension

tests will be introduced in Sections X.l through X.3 of the next chapter.

"Let g (.-,2, , be Amultiple-choice test item, In this
section, however, this symbol g is omitted, whenevev it is clear i
"that we deal with only one item, Let i C-l,2,,,,,ml be an alternative,

"or an option, of the multiple-choiLe item g , and Pi be the probability

with which the examinee selects the altentative i . The entropy U in

defined as the expectation of -lo62 Vi such that

(9,2) H- - P P log2 P1,i-l1

for the set of m alternatives of item g , It is obvious from (9,2)

'3t

4
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that the entropy H is non-negative, and, if one of the m alternatives

is the sure event with unity as its probability, then H - 0 . Sato's

Index k is defined by

(9.3) k = 2  ,

and is used as an index of the effectiveness of the set of m alternatives

for item g in the context of information theory. Since the entropy H

indicates the expected uncertainty of the set of m events, or alternatives,

the set of alternatives is more informative for a greater value of k.

When the probability pi is replaced by the frequency ratio, Pi

we can write for the estimate of the, entropy such that

.(9.4) Pi g2P

: (and for the estivste of k we hive

A H
(9.5) k - 2~

We notice that we can obtain the number of hypothetical, equivalent

alternatives k without using the entropy, for we have

"6 (9.6) k 2H 2 i1 m "i [iiPi -

The quantity in the brackets of rhe last expression of (9.6) is a kind

of weighted geooetric mean of 1 " Equation (9.6) also implies that

we can use any base for log p,. , instead of 2 . For convenience, I
hereafter we shall use e as the base of log Pi and use HA instead

of H such that

U

(9.7) H* -- l p, log, Pi 0

7-
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which equals zero when one of the alternatives is the sure event, and

, (9.8) k -e I ,

" and simply write log pi instead of logepi

I To find out the value of pi which maximizes H* , and hence

k , we define Q such that

Im m
(9.9) Q- M Pi log pI + X1 E pi-1]

where X is Lagrange's multiplier. Thus the partial derivative of

1Q with respect to pi is given by

!](9.10) api -[log Pi + (1/Pi)pi] + X - -log pi + (X - )

Setting this derivative equal to zero, we obtain

!,•i ] (9.11) log Pi -X

which is a constant regardless of the value of i . Since we have

,, i l
m

IP(9.12) E pi 1,

we obtain

13Pi m .

Thus it is clear that H* , and hence k , is maximal when all the

m alternatives are equally probable, and we can write

(9.14) max. (H*) = log m

and

.-. - . ' 7 II . -- *+' 71+
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(9.15) max.(k) W m •

Since in the present situation the m events.are alternatives,

the values of H* aid k are affected by the difficulty level of

item g . Let R be the correct answer to item g , which is given

as one of its alternatives, and pR be the probability with which

the examinee selects the correct answer R . Figure 9-4-1 presents

the relationship between the probability PR and the number of

hypotbetical, equivalent alternatives k . In this figure, the area

marked by slanted lines indicates the set of k 's which are less

than max,(k pR) and greater than umax.[l/pR, min.(klPR)] , and are

considered to be reasonable values of k by Sato and others. In j,

practice, Figure 9-4-1 is used by replacing the probability P by

0.2
6 0.5

Ri i i

R.0.5 1 ,0.

FIG4 9-4- 1/PII

•; O ~4

•'3

0. 0. S !1

, ~ PROBABILITY M"R CORRECT ANSWER

•. FIGURE 9-4-1

• • Relationship between the Probability with Which the Correct Anoter I To Selected
_•.• and -the Uvmber of Hyp6thatieal, Equivalent A-lternatives, for ylve-Chocea Iris.

k , •lt,,Sato's.. .....
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the proportion correct, PR 1and the number of hypothetical,

equivalent alternatives, k by its estimate .

(IX.5) Index k* for the Validation Study of the Three-Parameter
Logistic Model

Sato's Index k takes on a high value, if every examinee in

the group has selected one of the m alternatives at random. This

fact implies that, although the index was introduced for quite an
Sopposite purpose and proved its usefulness, it may also be useful in

detecting the examinee's random guessing behavior in quite a different

Lsituation* i.-e. the multiple-choice testing. In so doing, it will

be more convenient if we can odify Sato's Index k in such a way

that it is unaffected by the ability distribution of a specific

population of examinees, and can be considered as a pure property

of the item. With this aim in mind, we shall introduce a new index,

i.e., Index k*

Let A be the event that the examinee does not know the

answer to item g , and consider the probability space which consists

of such a subpopulation of examinees. The conditional probability,

p(ijX) , with which the examinee selects the alternative i of item

g in this conditional probability space is given by

•, i Pi ±rp + p*)- iOR

b p~~~~~E P i+p] , iR
;": '" •9. 161 p(ijX)iR

RiOR R

where pR denotes the probability with which the examinee guesses

correctly for item g . The new index, k* , is defined in terms of

these conditional probabilities, in such a way that

m m
(9.17) k* exp[- E p(ili).log p(iIX)] - [ i p(ijA)p(ilýi!*, -i i-l

It is obvious that p(ilA) for ijR is proportional to pi , for

"every examinee in the population who has selected one of the wrong

[ •[
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answers does not know the answer, and consequently, he is also in the

subpopulation A On the other hand, examinees who have selected

the correct answer R are not necessarily in the suspopulation A

so we can write

(9.18) pRA PR

Note that, if the examinee's behavior follows the Inowledge or

random guessing principle and the item characteristic function of the

multiple-choice item g is of one of the three-parameter models, p*

equals pi for iOR , and, as the result, all the m p(ill) 's

are equal and k* -m.

In practice, we need to use some estimates for p(ijA) 's to

.!. obtain the estimate of k* . Since we have the frequency ratio, P?

for the estimate of pi for iFR , all we need to do is to find out

an apprepriute estimate of p° Let P* denote such an estimate

of p' and P* be such that

(9.19) P
P* i=R

Then we can write for the estimate of p(iAX) such that

( (9.20) o(ijA) - - P[i •r- 1

We are to take the strategy of finding P* which makes k*

maximal. Define f* such that

m 11
(9.21) iI* -log Z* - A(ij.)-log g(ijx)

i-1
m m m j

E . E1 , P*.log P* - ( }log E P,)

Then the partiaI derivative of 1* with respect to P can be i

4b
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written as

[zm m
(9.22) P log P ( P*)I og P

and, setting this equal to zero, we obtain

(9.23) log P Z [ p Z P 1 0log Pi
GOR SO

and then

i',, Pi E Ps "
(9.24) P* It P sOR s

iOR

Thus we can use (9.24) in (9.19), and, therefore, obtain p(iIA)

through (9.20). The estimate of the new index, k* , is given by

(2)m m

(9.25) Q xV[- Z P(iLX) log P(ijx)] [ 0 (1 X)O(iJ IAX)
iimi iwi

A necwsgry, though iiot sufficient, condition for one of theSAA
three-p-rameter wodels to be valid is that k* should be equal to

m within sampl•.g fluctuations, regardless of che population of

examinees from which our sawp1 happened to be selected. If this is

not the case, we %vot say that the threa-parameter model does not

fit our item, i.e., the invalidation of the model.

(IX.6) Simulation Stud, on Index k*

1For the purpose of illustration, a set of simulated data was

calibrated, using the Monte Carlo method. In this set of data, five

hypothetical multiple-choice test items were assumed, each having
* - five alternatives, A, B, C, D and E, with A always as the correct

answer. Each item is assumed to follow the three-parameter

normal ogive model, and its parameter values are shown in

Table 9-6-1. A group of five hundred hypothetical examinees was

* I
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TABLE 9-6-1

%Item Dicriainatim Parmeter a a"

Item Difficulty Partameter b of tech

of the Five Hypothetical, 1S1bty Ite
,ollwin8 the Thre.-Parter Normal

Ol1ve YAW, vfth c 0 0.2.

'item a h

1.00 0.00

2 1.50 0

3 2.00 0.00 )
4 2,50 0.00

L 5 I5S 0.00

assumed, whose ability levels are placed at one hundred equally spaced

points on the ability continuum, which start with -2.475 and and

with 2.475 , in such a way that subjects I through 5 are placed

at e - -2.475 , subjects 6 through 10 are at a a -2.425 . and

so on. For each of the five hypothetical multiple-choice items, the

response of each of the five hundred hypothetical exasineas was

calibrated according to the specified item characteristic function

with the knowledge or rarndom guessing principle.

Table 9-6-2 presents the frequency ratio, p, , of each of

the five alternatives, for each of the five hypothetical multiple-choice

items. We can see that sampling fluctuations are fairly large for

item 4, and to a less degree for item 2, since the corresponding

probability, pi , is 0.6 for the alternative A and 0.1 for each
of the alternatives B, C, D and E . In the same table, also

presented are the values of P* , which were obtained through (9.24).

Using these values in (9.21), (9.24) and (9.25), the estimates of the

entropy H* and the Index k* were obtained, and are presented in

Table 9-6-3. Since the maximal possible value of 9* is approximately

1.60944 (-log m) and that of a* is 5 (-m) , we can say that these

results are sufficiently close to their respective maximal values, i.e.,

!•" ,
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TABLE 9-6-2

"Frequency Ratio of the Subject, Pi , Who Salocted

Each of the Five Alternatives, and the Modified
frequency Ratio P* for the Correct Answer A,

R
for Each of the Five Hypothetical Item-.

Alternative
A B C D E

!= Item

Pi .608 .086 .106 .100 .100
i , ' £* .098

2 P, .618 .102 .080 .106 .094
2 P* .096

Pi .600 .094 .106 .108 .092

S.100

P 1 .606 .lo4 .078 .130 .082
4 P* .101

P. .598 .092 .100 .104 .106

P* .101- - -

TABLE 9-6-3

:tropy, A*, and the Number of Hypothetical,
Equivalent Alternatives, i* , for Each of

the Five Hypothetical Items Following the

Three-Parameter Normal Ogive Modal.

Item

1 1.60714 4.98853

S2 1. 60501 4. 97789

3 1.60744 4.99000

i 4 1. 59224 4. 91475

5 1.60809 4.97489

7*
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an exemplification of the satisfaction of one of the necessary

conditions for validating the three-parameter normal ogive model and

the knowledge or random guessing principle by our simulated data.

The fact that these results are less satisfactory for item 4 and that

the same is true, to a, lesser degree, for item 2 must be due to the

sampling fluctuations, which were observed in Table 9-6-2.

For the detail of this studyt the reader is directed to

ONR-Tokyo Scientific Monograph 3, Chapter 5.

(IX.7) Iowa Tests of Basic Skills

Concerning the validation of mathematical models, an empirical

study was conducted using test data provided by Dr. William

Coffman of the University of Iowa, who is also Director of

the Iowa Testing Programs. For simplicity, hereafter, we shall call

them Iowa Data, and this part of research Iowa Study. The data

analysis of this part of the research was conducted by the persistent

effort of one of the author's assistants, Robert Trestman.

The battery of tests used here is the Iowa Tests of Basic Skills,

Form 6, Levels 9-14. These tests have been designed, constructed, and

revised at the College of Education of the University of Iowa since

1935, with the general school population in mind, and for students of

ages nine through fourteen, or grades three through nine. All

technical information in this paper has been taken from either Form 6

itself (Hieronymous and Lindquist, 1971), or its Teacher's Manual

(Iowa Basic Skills Testing Program, 1971).

There are elevern tests in the battery, each of which focuses on

a different basic skill. For convenience, hereafter, we shall call

these separate test- subtests, in order to avoid the confusion which

might occur when we refer to both the total test battery and each

test ii the battery. Following the Teacher's Manual, the descriptionc

and abbreviations of these eleven subtests, together with their

administration schedule and working times, are tabulated and presented

in Table 9-7-1. All the test items are power test iteaws with

multiple-choice format, with five alternative answers for the items i.n

IiVI - 1,r:•:2.
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TABLE 9-7-I

Administration Sessions. Time Limits and Subtests of Iowa Tests
of Baste Skills.

Administration Working
Time Subtest

S (Minutes)

First Session 17 V: Vocabulary
85 Minutes 55 R: Reading Comprehension

12 L-i: Spelling
Second Session 15 L-2: Capitalization

80 Minutes 20 L-3: Punctuation

20 L-4: Usage

30 W-l; Map Reading
Third Session 20 W-2: Reading Graphs and
S85 Minutes Tables85 30 W-3; Knowledge and Use of

Reference Materials
Fourth Session 30 M-1: Mathematics Concepts

5 Mute 30 M-2: Mathematics Problem

r•5 Minutes Solving

Subtest LI, and with four alternatives for those in the other ten
C -subtests. These eleven subtests are designed to cover all major

areas of academic interest for the grades three through nine.

The numbers of test items contained by the eleven separate
subtests are 114, 178, 114, 102, 102, 86, 89, 74, 141, 136 and 96,
respectively, following the order of subtests given in Table 9-7-1.

For each of the fivet levels, 9 through 14, only a subset of each
subtest is administered. The standardized administration schedule

and the working time for each subtest are presented in Table 9-7-1.
For the entire test battery, the time required for the administration
of each level of test is four hours and thirty-nine minutes. It is
recommended that the test be administered on four consecutive days.

In our data, only the tests of Levels 1i, 12 and 13 were used.
The numbers of test items contained in these three levels of test are

461, 487 and 500, respectively. A graphical representation is made

in Figure 9-7-i, to show how these three subsets of test items in

each subtest overlap among the three levels.

I, I
I'1
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V -8

R __

L2
L3 L3
L4

Ca WiL
j (A W2

W3 •_ _ _ I

Mi ,
M2

0 20 40 60 80 100 120 140 160
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FIGURE 9-7-1

Test Iteas of Sach of the Eleven Subtests of Iows Teats of lasic

Skills Adsinistev'ed to Each of Levels 11., 12 and 13 , Which Are

Jepreqented by Shaded, Hoy, and Solid Bars, Respectively.

We notice in Figure 9-7-1 that all the test items given to

the students of Level 12 are also given to those of Level 11 or Level

13, or both. There are exactly one hundred test items which are

given to all the three levels of examinees. There are 264 which are

given to Levels 11 and 12, and 323 to Levels 12 and 13, respectively.

We also have 197 items which are taken by the examinees of Level 11

only, and 177 by those of Level 13 only. Thus the total number of

test itemu is 1,061.

(IX.8) Original and Revised Iowa Data

Data were collected in three different school systems in the j
State of Iowa, in the years 1971 through 1977. In their original

form, the total number of examinees, including both boys and girls,

is 7,581. Out of these people, 28 students took Level 9 Test aud --

114 took Level 10 Test. Since these are relatively small numbers, we

decided to exclude them from our original group of examinees. The

77,- 77. 7-.I __
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other 7,439 examinees are classified into three subgroups, i.e.,

2,460 students who took Level 11 Test, 2,452 who took Level 12 Test,

Sand 2,527 who took Level 13 iest. Hereafter, we shall call

* observations concerning these 7,439 examinees the original data.

It was found out that there are a relatively small number of

examinees who did not respond to a substantially large number of
test items. While as many as 7,010 examinees out of the total 7,439
examinees left only 49 or less test items unanswered, there also are

162 examinees who did not respond to as many as 100, or more, test

items. Our raw data show there' are some examinees included who

skipped an entire subtest, or more than one entire subtest. A close

examination of the original data indicates that, if we exclude all

the examinees who left, at least, one half of a subtest unanswered

from our total group of examinees, tnen the number of examinees who

left 200 or more test items unanswered will become zero, and only

28 examinees, who omitted more than 100, but less than 200, test items,

: jwill be included. For this reason, we have decided to exclude the

193 examinees who left .one half of a subtest, or more, unanswered

from our original group of examinees for the detailed analysis.

Hereafter, we shall call observations concerning the remaining 7,246

examinees the revised data, to distinguish them from the original data.

Table 9-8-1 presents the item identifications of the fifty-five

test items, i.e., 34 for Level 11, 15 for Level 12, znd 6 for Level 13,

6 to which less than 90 percent of examinees respvaded in the original

data, their percentages in the original and revised data, respectively.

We can see in this table that for iv.ot of these fifty-five test items

the two percentages show a visible improvement caused by the exclusion

of the 193 examinees. There is -a substantial improvement in the

percentage of examinees who answered in one way or another, for all

the three levels, which was provided by the exclusion of the 193 I
examinees. Among others, we notice that the frequency of test items

which were answered by 99 percent, or more, of examineses increased

from 231 to 320 for Level 11, from 319 to 350 for Level 12, and from

286 to 377 for Level 13.

31
.,
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TABLE 9-8-1

Fifty-Five Test Items of Iowa Tests of Basic Skills to Which Less Than Ninety
Percent of Examinees Responded in One of the Three Levels in the Original Data,

the Percentages of Responses in the Original Data, and Those in the Revised Data.

"Level 11 Lavel 12 Level 13

Item Original Revised Original Revised 1riginal Revised

V-66 89.1 91.4
.- )5 69.6 91.9

R-96 89.2 91.5
R-97 88.7 91.0

1-98 88.3 90.7
Ll1-62 89.4 91.8

L1-63 88.3 90.7

L1-64 87.5 90.0

Ll-65 86.3 88.7
L1-66 84.8 87.3
Ll-80 89.•7 90.•7
Li-BO a.g8, 89.9
L1-81 87.9 88.9

Ll-82 .9 69

L1-83 87.0 88.0
L1-84 86.2 87.2
LI-85 85.4 86.4

LI-105 89.7 90.6
W1-41 88.9 91.4
W1-42 85.6 88.2
W1-43 83.3 86.0

V1-44 81.7 84.3

WI-45 79.2 81.6
Wl-46 76.7 79.0
W1-47 74.7 76.9
W1-60 89.2 90.4
W1-61 87.2 88.3

W1-62 85.2 86,3

W1-63 82.7 83.8
W1-64 80.8 81.9
Wl1-65 78.4 79.4

W1-66 75.4 76.3
W1-67 74.2 75.2
WI-74 88.9 90.0
W1-75 87.3 88.4
W1-76 86.2 87.2
W1-77 85.0 86.1

W1-78 83.9 84.9

W3-69 90.0 52.3
W3-70 89.3 91.5
W3-71 88.8 91.0
W3-72 87.9 90.2
W3-73 87.1 89.4
W3-74 86.8 89.0
W3-75 86.0 88.3
W3-76 84.9 87.2
W3-77 84.0 86.3
V3-78 83.5 85.8
W3-79 82.8 85.0
W3-80 82.3 84.5
W3-81 81.6 83.8
W3-82 81.1 83.3
M2-52 87.9 90.0
M2-53 85.9 87.9
K2-54 83.7 85.7
K2-69 89.4 90.3

""ut .- ... "...-....-



-189- IX-17

Table 9-8-2 presents the frequency distribution of test items

for each of the eleven subtests with respect to the percentage of

examinees who answered correctly, for each of Levels 11, 12 and 13,

for the revised data. It should be noted that, even in the revised; data, these percentages correct are not independent from the positions

of the test items in each subtest. There is a distinct tendency that

larger numbers of examinees did not respond to items which were

presented later in each subtest. It is obvious, therefore, that,

for these later items, the percentage for the correct answer is less

than it should be in the ideally set free-response situation.

(IX.9) Informative Distractor Model

By Informative Distractor Model, we mean the family of models

in which we assume the existence of specific information obtainable

from separate alternative answers, including the correct answer, of

1:1 each multiple-choice test item.

TABLE 9-8-2

frequency Distribution of Items for Each of the Eleven Subtests with Respect to the
Percentage of Exaalnees Answering Correctly. Each interval of Percentage Is Greater

than or Equal to the Lover End end Less than the Upper End.

low Revised Data, Level 11

Percentage SubtestV R Ll L2 L3 L4 Wi IW2 W3 Ml Total

1 0.0 - 5.0 0
2 5.0 - 10.0 0
3 10.0 - 15.0 0
4 15.0 - 20.0 1 2 1 4
5 20.0 - 25.0 1 1 1 1 1 1 1 7

S6 25.0 - 30.0 1 2 1 1 4 9
7 30.0 - 35.0 1 4 2 1 2 1 3 2 16
"8 35.0 - 40.0 3 2 2 1 2 1 2 1 4 3 21
9 40.o - 45.0 4 5 6 3 4 5 1 2 3 3 2 38
10 45.0 - 50.0 4 9 7 6 5 6 1 3 4 3 48
11 50.0 - 55.0 4 8 3 3 4 4 7 10 8 3 54
12 55.0 - 60.0 10 5 5 2 5 4 6 3 .5 3 2 60
13 60.0 - 65.0 5 4 1 9 5 5 4 2 S 2 3 46
14 65.0 - 70.0 4 6 3 5 9 3 6 3 9 5 4 57
15 70.0 - 75.0 4 9 5 3 2 1 2 1 6 3 3 39

S16 75.0 - 80.0 2 5 6 4 6 1 1 1 4 2 32
17 80.0 - 85.0 1 7 1 1 2 2 1 15
18 85.0 - 90.0 4 1 1 1 1 1 9
19 90.0 - 95.0 2 2 1 1 6

20 95.0 -100.0 0

Total 43 74 43 40 40 32 36 26 56 42 29 461

"- -
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TABLE 9-8-2 (Continued)

,Ioa Revised Data, Level 12

Subtest
Percentage V R Ll L2 L3 1A Wi W2 W3 HI M2 Total

1 0.0.- 5.0 0
2 5.0 - 10.0 0
3 10.0 - 15.0 0
4 15.0 - 20.0 1 1
5 20.0 - 25.0 1 1 1 1 1 2 1 8
6 25.0 - 30.0 1 5 1 2 1 1 2 2 15
7 30.0 - 35.0 1 3 5 2 3 1 3 1 1 20
8 35.0 - 40.0 6 6 5 2. 3 2 2 1 4 2 4 37
9 40.0 - 45.0 1 2 2 3 1 1 4 4 4 4 3 29

10 45.0 - 50.0 3 10 4 1 6 6 7 1 5 4 5 52
11 50.0 - 55.0 4 12 4 2 8 5 4 1 2 7 1 50
12 55.0 - 60.0 7 9 6 5 6 5 4 4 6 4 5 61
13 60.0 - 65.0 8 12 5 6 4 5 2 6 1 4 1 54
14 65.0 - 70.0 4 5 4 5 5 3 1 2 10 4 43
15 70.0 - 75.0 5 6 1 5 2 1 7 4 8 3 5 47
16 75.0 - 80.0 4 4 2 6 4 4 2 5 4 3 38
17 80.0 - 85.0 2 2 2 4 1 8 2 21
18 85.0 - 90.0 2 1 1 1 2 2 9
19 90.0 - 95.0 1 .1 2
20 95.0 -100.0 0

Total 46 76 46 42 42 32 40 28 59 45 31 487

loaw Revised Data, Level 13 ".

Subtest TPercentage V R Li L2 L3 L4 W1 W2 W3 M1 Total

1 0.0 - 5.0 02 5.0 - 10.0 0-
3 10.0 - 15.0 1 1
4 15.0 - 20.0 1 1 1 3
5 20.0 - 25.0 3 2 1 1 1 4 12
6 25.0 - 30.0 1 2 3 1 2 1 1 1 5 17
7 30.0- 35.0 4 3 4 2 1 5 1 2 1 6 2 31
8 35.0 - 40.0 3 4 6 1 3 3 5 3 6 3 37

40.0 - 45.0 4 11 11 2 2 3 3 2 8 8 3 57
10 45.0 - 50.0 2 4 2 5 4 1 2 2 3 5 5 35
11 50.0 - 55.0 5 6 5 4 7 4 6 3 10 3 4 57
12 55.0 - 60.0 6 9 2 6 7 5 7 6 5 4 57
13 60.0 - 65.0 6 15 4 3 6 4 3 2 4 5 1 53
14 65.0 - 70.0 4 8 4 3 3 2 3 4 3 4 38
15 70.0- 75.0 7 7 2 7 3 3 3 2 5 6 1 46
16 75.0 - 80.0 2 5 2 4 2 2 6 2 25
17 80.0- 85.0 2 2 4 2 2 3 2 2 19
18 85.0 - 90.0 2 1 1 1 1 3 1 1 11
19 90.0 - 95.0 1 1

120 195.0 -100.0 1 0]

Total 48 78 48 43 43 32 41 28 59 48 32 500 S

For the type of tests Shiba's word comprehension tests belong

to, which will be introduced in Section X.1 of Chapter 10, some

specific model, or models, of the Informative Distractor Model is
,"called for. Models A, B and C proposed by the author, which will be

i

•:":' •, ".......IC.....................,.•
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described in Section X.7 , belong to this family of models. If we

succeed in developing appropriate multiple-choice test items which

follow this type of models, then they will no longer be blurred

images of the corresponding free-response test items, but will

provide us with additional information from the distractors which

free-response test items will never have.

(IX.IO) Equivalent Distractor Model

In contrast to the Informative Distractor Model, Equivalent

Distraýtor Model means the family of models in which no specific

information is expected from separate incorrect answers, which are

given as alternatives in the multiple-choice test item. Thus all

the alternatives, except for the correct answer, of a given

multiple-choice item are equivalent, since the information given by

a specific alternative,.or distractor, is not different from the

one given by each remaining wrong answer. The three-parameter

logistic, or normal ogive, model belongs to this family of Lodels.

In this model, all the information provided by a given wrong answer

is pure noise resulting from random guessiag, and, therefore, the
alternative is equivalent with any remaining wrong answer. Note,
however, that this type of model, which is based upon the knowledge or

random guessing principle, is not the only one included by the

Equivalent Distractor Model. Suppose that the operating characteristic

of each wrong answer of a given multimple-choice item includes some
informaton about the examinee's ability, but all the operating

characteristics, or plausibility curves, of the distractors are

identical. In such a case, we can say that the test item should

belong to the Informative Distractor Model in the sense that these

distractors provide us with some information concerning the examinee's

ability. On the other hand, we can also say that the item should

belong to the Equivalent Distractor Model, since each distractor does

r.ot have any specific information which distinguishes it from the other

distractors. For convenience, in the present paper, we shall take the

second standpoint, defining the Informative Distractor Model in the

narrower sense.

•4, ,,. . . . . ., • . . . , . . . . . .. . . __•, .
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(IX.l1) Index k* for the Invalidation of the Equivalent
D-istractor Model

It is obvious that Index k* , which was introduced in

Section IX.5 , can be used for the invalidation of the Equivalent

Distractor Model, and even as a weak support for the Informative

Distractor Model. If Index k* turns out to be far less than m,

then we must reject the hypothesis that our model should belong

to the Equivalent Distractor Model. If it assumes a value close

to m , then we shall say that Equivalent Distractor Model may be

adequate. In both cases, however, Informative Distractor Model
stay* among the possibilities.

It is noted that the traditional chi-square test with (m-2)

degrees of freedom for the goodness of fit for the frequencies of

the (m-i) wrong answers with the uniform distribution as the

theoretical distribution may serve our purpose just as well, without

using Index k* . In our pilot study, we applied it for the

original data of 7,439 examinees. The result turned out to be

such that only 23, 22 and 21 test items indicate the acceptance of

the respective uniform distributions, or the acceptance of Equivalent

Distractor Model, for Levels 11, 12 and 13, respectively, even if we

take as low a level of significance as 0.0005 . This comes from the

fact that our sample sizes are so large that the chi-square test
is very sensitive to small diversions from the hypothesized uniform

distributions. We must question, however, if such small diversions

L mean anything for our purpose. If, for instance, the hypothesized

uniform distribution provides us with the probability 0.15 for

each of the three wrong answers and the true distribution gives

0.16 , 0.14 and 0.15 , respectively, then the detection of these

I..: small deviations, i.e., 0.01 , at most, will not make a strong

basis for the rejection of the Equivalent Distractor Model.

In contrast to the chi-square test, the estimated Index k*

is insensitive to the sample size, because the sampling fluctuation

participates in the resulting estimate only throsigh the computation

of the proportions, Pi (cf. Section IX. ). Thus, if we wish to

__ _ -
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more or less ignore the sampling fluctuations of the proportions,

then Index k* may be adopted, and these values can be comparable

across different sample sizes.

(IX.12) Results Obtained by U Index k* on Iowa Data

Table 9-12-1 presents the frequency distribution of the itams

of each of the ten subtests, excluding Subtest Ll, which consists of

five-alternative test item, with respect to the resultant values

of the estimated Index k* , for each of Levels 11, 12 and 13. The

corresponding result for Subtest Ll is presented, separately, as

Table 9-12-2, for all the three levels. We can see in Table 9-12-1

that the configurations of these frequencies are similar across the

three levels, with the range of the estimated Index k* , 2.25 through

4.00 , for each level. This is also the case with Subtest Ll, with

the range of the estimated Index k* , 2.25 through 4.50 , for most

items, as is shown in Table 9-12-2. We notice in Table 9-12-1 that,

for each level, the mode of the total frequency distribution is the

highest category, 3.75 through 4.00 . If we examine the frequency

distributions of separate subtests, however, we will notice that

there are some variations among their configuratLons. Above all, it

is noted that Subtests L2, L3 and L4 have different modes from the

highest category, i.e., iostly either the category, 3.00 through

3.25 , or the category, 3.25 through 3.50 . This tendency is

also shared by Subtest Ll, which has five-alternative multiple-choice
test items, as is shown in Table 9-12-2.

Eight examples of the frequency distribution of the examinees

with respect to their choices of an answer out of the four alternatives

are presented as Figure 9-12-1. These test items are selected from

the subset of 76 test items for Level 13, whose Index k* 's are 3.9

or greater. For Levels 11 and 12, there are 78 and 73 such test

items, respectively. In each histogram, also drawn by a dotted line

is the estimated proportion, P* , multiplied by the number of

examinees who answered the item in one way or another, or the total

number of examinees subtracted by the number of those who did not

7~7T:7:T j 7 J



-194- 1X22

TABLE 9-12-1

Frequency Distribution of Four-Alternative Items vith Respect to Index
k* for Each of the Ten Subtests of Iowa Tests of Basic Skills. The
Range of Index k* Is Greater Than or Equal to the Lover End and Less
Than the Upper End of Each Interval, for Each of Levels 11, 12 and

13.

Lavel 11

am&* ' 2bteat m M2 Tof Index k* V I L2 L3 IA W1 W2 W3 11 I oa

1 1.00- 1.25 0
2 1.25 -1.50 0
3 1.50- 1.75 0
4 1.75 2.00 0
5 2.00 2.25 0
6 2.25 -2.50 1 2 1 4S7 2.50- 2.75 1 2 7 1 1 1 13
& 2.75- 3.00 3 2 6 a 3 2 1 25
9 3.00 - 3.25 6 6 10 12 a 1 2 5 3 1 54

10 3.25 - 3.50 3 13 a 7 12 4 1 9 4 1 62
11 3.50 - 3.75 11 13 6 a 6 7 4 12 7 12 46
12 3.75 - 4.00 19 37 1 4 3 23 16 29 27 is 174

Total 43 74 40 40 32 36 26 56 42 2i 418

Level 12

Masge Imabtest Total
of Index k* V I L2 1.3 1i VI 2 WS3 MI M2

1 1.00 - 1.25 0
2 1.25 - 1.50 0
3 1.50- 1.75 0
4 1.74- 2.00 0
5 2.00 - 2.25 0
6 2.25 -2.50 1 4 5
7 2.50 -2.75 2 1 6i 1 1 14
8 2.75 -3.00 2 4 6 8 3 5 2 30
9 3.00 3.25 4 10 7 a 8 2 S 6 1 54

10 3.25 -3.50 4 9 a 10 11 4 3 11 5 3 70
11 3.50- 3.75 10 1s 5 11 5 6 1 16 8 10 97
12 3.75 - 4.00 22 33 4 4 4 2a 17 19 23 17 171

Total 46 76 62 42 32 40 28 59 45 31 441

Level 13

Reasa. lobtestToa
of Wdax k* V a U L3 IA VIf Vr2 V3 NI Ni Total

1 1.00 - 1.25 0
2 1.25 -1.50 0
3 1.50- 1.75 0
4 1.75 - 2.00 0
5 2.00 - 2.25 0
4 2.25 - 2.50 2 3 5
7 2.50- 2.75 3 ? 2 1 1 14
, 2.75 - 3.00 2 5 7 4 2 2 2 24
9 3.00 - 3.25 1 5 10 11 7 7 4 1 46

10 3.25 - 3.30 11 7 # 10 10 5 10 9 5 75
11 3.50 - 3.75 10 24 5 11 6 7 10 21 12 7 113 -"12 3.75-4.00 19 37 3 5 6 29 iS 15 21 19 175

Total 48 75 43 43 32 41 28 59 48 32 452

-- - -
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TABLE 9-12-2

Frequency Distribution of Five-Alternative itesm of
Subtest Li of Iowa Tests of Basic Skills, with
Respect to Index k* , for Levels 11, 12, and

13 , Respectively.

Range Level
of Index k* 11 12 13

1 1.00 - 1.25 0
2 1.25 - 1.50 0
3 1.50 - 1.75 0
4 1.75 - 2.00 0
5 2.00 - 2.25 0
6 2.25 - 2.50 4 4 1 9
7 2.50- 2.75 5 1 2 8
8 2.75 - 3.00 4 4 4 12
9 3.00 - 3.25 2 2 8 12
10 3.25 - 3.50 5 11 6 22
11 3.50 - 3.75 9 7 5 21
12 3.75 - 4.00 4 5 11 20
13 4.00 - 4.25 5 6 4 15
14 4.25 - 4.50 4 5 4 13
15 4.50 - 4.75 1 1
16 4.75 - 5.00 1 3 4

Total 43 46 48 137

answer the item at all. We can see in this figure that most of these

histograms are close to rectangles, if we replace the frequency for

the correct answer by the height indicated by the dotted line in each

histogram.

In the total set of 227 test items, whose values of the

estimated Index k* are greater than 3.9 , we find only four tent

items from Subtests L2, L3 and L4, i.e., L2-58 (k*-3.95473) and

L3-49 (k*=3.95320) of Level 11, and L3-49 (k*=3.95658) and
L2-58 (k*-3.95318) of Level 12, which are actually two items saraed

by both Levels 11 and 12. A close examination of the contents of the

test items of these four subtests, including Subtest LI, and their
results of analysis reveals the following facts.

(1) All the questions in these four language skill subtests are
in the form of having the examinee find mistakes in spelling,

"IAL
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FIGURE 9-12-1

Frequency Distribution of Examinees of Level 13 with Respect to Their Responses to Each of
Eight Test Items of Iowa Tests of Basic Skills Sampled from Those Whose Values of Index k*

are 3.9 or Greater, with the Estimated Proportior of the Examinees Gussting Correctly

(Dotted Line).

capitalization, punctuation and usage, respectively.

(2) Unlike the test items in the other seven subtests, these

items 'nave "No mistakes" as the last alternative, and for

most items this alternative has a high frequency, even

when it is a wrong answer.

-i~- .,'~
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From these facts and the abave results, it is obvious that

Equivalent Distractor Model is not suitable for the items of the

four subtests of language skills, including Subtest LI, which

consists of five-alternatlve test items. For these items,

Informa'-ive Distractor Model may be more appropriate.

Figure 9-12-2 presents similar histograms to those in Figure

9-12-1 for the frequency distributions of eight four-alternative test

items, which were selected from the subset of 9 test items whose

Index k* 's are less than, or equal to, 2.6 , for Level 13. The
2 corresponding numbers of test items are 7 for Level 11, and 11 for

Level 12, respectively. We can see in this figur,. that these

histograms, whose frequencies fox the correct answers are replaced

by the corresponding dotted lines, are far from rectangles. There

is no reason to accept Equivalent Distractor Model for these test

items.

(IX.13) Comparison of the Results on Common Test Items for Three
Levels of Examinees in Iowa Study

There are certain test items which are included in all the

three levels. Their numbers are nine for Subtest V, nineteen for

Subtest R, nine for Subtest Ll, ten for Subtest L2, ten for Subtest
L3, eleven for Subtest L4, ten for Subtest WI, six for Subtest W2

and sixteen for Subtest W3, which make the total number of test

"items shared by all the three levels one hi,.idred. There is

no item which is included in all three levels for Subtests Ml and M2.

It is evident that, for the behavior ofte test item to follow

Equivalent Distractor Model, not only the value of estimated Index

k* should be close to m for one level of examinees but also for all
?• J three levels. it will be worthwhile, therefore, to compare the

results across the three levels for these one hundred test items which

are included in all the three levels of test. We find that only 7

out of the 91 four-alternative test items, i.e., V-61, R-88, W1-45,

W1-46, W2-44, W2-45 and W3-70, have three estimates of Index k* all

of which are greater than, or equal to, 3.9 . If we shift this

II
4 %

.,I
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•h~
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a0m Subtest V Now Subtelt V Subtest L2 lubtest LZ
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FIGURE 9-12-2

Frequency Distribution rf Examinees of Level 13 with Respect to Their Respooses to Eacii of Eight

Test Items of lowa Tests of Basic Skills Sampled from Those Whose Values of Index k* are 2.6

or long, with the Estimated Proportion of the Examinees Guessing Correctly (Dotted Line).

critical value from 3.9 to 3.8 , these seven four-alternative test

items are joined by eleven more items, i.e., V-63, V-66, R-80, R-90,

R-92, L2-58, L3-49, W1-40, W1-43, W1-47 and W2-41 . There are no
five-alternative test items of Subtest L1 which are comparable to
these eighteen four-alternative test items.

Figure 9-13-1 presents four examples of the sets of the three

histograms for Levels 11, 12 and 13, which are similar to those in

Figures 9-12-1 and 9-12-2, and sampled from the total nineteen shared

test items of Subtest R.

-7 -- -- - - -- -
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FIGURE 9-13-1

Comparison of the Three Frequency Distributions of Izamlnees with Obspect to Their

Choices of Alternatives for Each of the Twenty Items of Subtest R of Iowa Tests of

Basic Skills, Which Were Administered to All Three Levels of Students, with the

Eatimated Proportion of Examinees Guessing Correctly (Dotted Line)
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IJ
It is interesting to note that some items show evidence of

differential information provided by separate wrong answers. For

example, alternative 4 of R-80 seems to attract students of

intermediate reading ability, while alternative 1 of the same item

appears to attract students of lower levels of ability. It is clear

that many items have one or more effective distractors, and, among

others, alternative 2 of R-86 proved to be powerful. Most histograms

have some regularities in the way the frequencies change across the

three levels, which suggest that the examinees selected their answers
intentionally rather than by random guessing.

For the detail of the Iowa Study, the reader is directed to

the research report, RR-80-1.

(IX.14) Remarks on the Usage of index k*

It should be noted that high values of Index k* can happen
in situations wheve Informative Distractor Model is perfectly legitimate.

f, (When this happens, our information is differentiated for the separate
distractors, and yet the number of examinees who selected each distractor

as their answers is close to that of each other. This is an ideal

situation for our purpose of mental measurement, because, not only each

distractor is informative, but also all of these distractors are well

used, with the examinees' answers distributing evenly over the distractors.

We recall Sato's Index k, which was introduced in Section IX.4, is for A

this purpose, and works well in the small classroom situation where

teachers supervise their students well and there is little chance for

the students to make random guessing.

The above fact makes us realize that we must be careful before

we make conclusions from the estimated values of Index k*. Observation

of the values of Index k* across several subpopulations of examinees of

different ability levels, like the one for Levels 11, 12 and 13 of

Iowa Data which was introduced in the preceding section, is one of
the ways of finding out the cause for high values of Index k*. If

it is due to the equivalence of the distractors, then we will have

similar values of Index k* across the subpopulations; if differential

ei/
- -
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information exists for the separate distractors, then the values of

Index k* will differ for the separate subpopulations, provided that

their ability differences are substantial. Another way is to compare

the sample means of the ability estimate among the subgroups of

examinees who selected separate distractors for their tnswers. If

differential information exists, then these sample means of the

ability estimate will also differentiate, while they will stay close

to one another if the distractors are equivalent. This was done in

Shiba's study, which will be introduced in Section X.3 of the next

chapter.

With these considerations in mind, Index k* can be used

effectively.
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X A New Family of Models for the Multiple-Choice Test Item: II

In the preceding chapter, Index k* was introduced, and

through the work on Iowa Data we have seen that the type of models,

which are based upon the principle of knowledge or random guessing,

do not work for many multiple-choice test items. In this chapter,

Shiba's research on the word comprehension, and then the new family

of models for the multiple-choice test items, will be introduced.

MX.1) Shiba's Word Comprehension Tests

The battery of tests used for the construction of the word

comprehension scale consists of eleven tests, Al, A2, A3, A4, AS,

A6, Ji, J2, Sl, S2 and U . Each test contains thirty to fifty-

eight multiple-choice items, each having a set of five alternatives.

These tests differ in difficulty, and each of them is designed for

a different group of ages, ranging from six years of age to the ages

of college students. There are subtests of items included in two

tests, which are adjacent to each other in difficulty. For example,
items 37 through 56 of Test Jl are also items 1 through 20 of Test
J2. The number of examinees used for the word comprehension scale

construction varies between 412 sixth graders of elementary schools
for Test AS and 924 second graders of senior high schools for Test

Sl (Shiba, 1978).

The model adopted for the item characteristic function of

each vocabulary item is the logistic model which is given by (8.12),

with D - 1.7 , as the substitute fvr the normal ogive model. Note

that Shiba did not use the three-parameter logistic model. This is

based upon his belief that three-parameter models are not
I applicable for well-developed multiple--choice items, which he has"--

formed through his many experiences in test construction and

research.

The author found Shiba's research very interestinS,

especially in the following aspects.

(1) The word comprehension tests are very well constructed.

--..... . . ...- . ....... : "• -' . I.77
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choosing each alternative carefully.

(2) Unlike many researchers in the United States, they have

tried to make a full use of the distractors.

(3) Subjects were selected from many different age groups.

(X.2) SubJects Used in Shiba's Research

Each of the eleven tests was administered to a group of

subjects who belong to a single school year, except for college

students. Hereafter, for convenience, we shall use EL for

elementary schools. JR for junior high schools, SH for senior high
schools, and CS for colleges, and add the school year after each

symbol. For instance, by SH2 we mean a group of subjects who are

in the second year of senior high schools. The correspondence of

the subject groups and the tests administered is summarized as

follows:

Al for ELl (650), A2 for EL2 (650), A3 for EL3 (546),

A for EL4 (617), A5 for EL5 (599), A6 for EL6 (412),

Jf for JHI (614), J2 for JH2 (758), S E for SHI (924),

S2 for SH2 (759), and U for CS (740).

where the numbers in parentheses indicate respective numbers of

examinees. Note that JH3 and SH3 are not included in the data

which are the basis of the word comprehension scale construction.

(X.3) Methods and Results of Shiba's Research

It is assumed that, for each of the eleven groups of

examinees, the ability distribution is normal. The principal

factor solution of factor analysis is applied for the tetrachoric

correlation matrix for each group of examinees, using the largest

absolute value of the correlation coefficient in each row, or

column, as the communality. This step is also the process of

validating the unidimensionality of ability. Figure 10-3-1

illustrates the resulting set of eigenvalues for Test Jl which was

LI
] I. . . .
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FIGURE 10-3-1

zigemvalues of the Correlation Matrix of the Fifty-Five ltefa of
I, ,Teot J1, Ordered with easpect to Their Magnitudee. (Shibe's Data)

' I"administered to 614 first ye%'.r junior high school students. It[ turned out that the first eigenvalue is much larger than all the

other eigenvalues, and thus the unidizansionality was confirmed.

- Hereafter, this first principal factor is treated as 6

Let pg be the factor loading (e.g., Lawley and Maxwell,

1971) of the first principal factor, or e , for item £ • The

item discrimination parameter, a , is obtaine~d by

,(10.1) a~ - g(i-o)"B/2
__.!,, ag D

Let 0(u) denote the standard normal distribution function, such
that

F

• ..... "- "I .- - - ,.,; *.'•" .
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' / "-'
2 1- /2 f u e -t 2/2 ....d. ...t

(10.2) O(u) (2) dt

The item difficulty parameter, b , is given by
g

-1 -1
(10.3) bg 1 gR Pg

where pgR is the probability with which the examinee answers I
item g correctly. In practice, this is replaced by the frequency

ratio, P to provide us with the estimate of b
gR g

on the same continuum, and they are integrated into a single scale.

This equating is made through the ten subsets of items, each of

which is shared by two adjacent tests. Let a and b be the
g g

item parameters estimated from the result of the first test, and

a* and b* be those from the result of the second test. DenotingI gg

the two ability scales by 8 and e* , respectively, we can write

(10.4) a (-b a*(e*-b*b)

since the item characteristic functions, which follow the normal

ogive model, of the same item g on the two ability scales must

assume the same value for the corresponding values of 6 and 0*

Thus the functional relationship between 6 and 8* is given by

(10.5) 0* (a /a)e + Eb*-(a/a*)b ]

which is linear, and the two coefficients are obtained from these

four parameters. In practice, we obtain as many sets of

coefficients as the number of common items, and we need to use some

type of "average" of these coefficients for the scale transformation.

Figure 10-3-2 presents the ability distributions of eleven subject
S: ':groups after such trans formations were made and the mean and the

standard deviation of the distribution of Jl are taken as the

4 h
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FIGURE 10-3-2

Estimated Density Functions of the Twelve Groups of amineeu, Which Are Asasued to Be Normal.
The Ability Scale Is Defined in Such a Way that the Density Function of the Tiart Grade Group

of Junior High School (JH1) Is n(0,1) . (Shiba's Data)

., origin and the unit for the new, integrated ability dimension.

SThe item characteristic function of each item on the new,

integrated scale 6 is approximated by the logistic function, which is

given by (8.12). The maximum likelihood estimate, e, of each

examinee's ability is obtained through the equationt 7
F n n

(10.6) E aP Z a Xgj
g199 .g1 g

(cf. Birubaum, 1968), where xg is the binary item score of

individual j for item g . The item information function of

each test item, and then the test information of each test, are

,0

i 1
i1
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obtained (ef. Section 111.4).

The theoretical frequency distribution of test score T for

each test and examinee group can be written as

x l-Ng '

(10.7) N Z P ()g El-P (e)]
VcT u EV g g

where V is a response pattern of a vector of n items scores,

and T is the test score given by

n
(10.8) T E x

Sg=1 g

This is used for the validation of the model and assumptions

adopted in the process of analysis. The sample mean of the maximum

likelihood estimates 0 of the subgroup of examinees, who selected

each of the five alternatives is calculated, for each item of each

test. A tailored test of the word comprehension is constructed by

selecting an appropriate subset of items from these eleven tests,

in such a way that an individual is directed to a next item which

is chosen on the basis of the sample mean of 6 of the alternative

he has selected for the present item.

The research conducted by Shiba and others includes more

interesting data than were used in the word comprehension scale

construction. Table 10-3-1 presents a part of them, in which the

frequency distribution of the alternative selection by the first year

students of junior high schools, ana the mean of the maximum

likelihood estimate of ability for each alternative are shown for

nineteen items included in both Tests Jl and J2, and administered

to four different subject groups, Jill, J32(a), JR2(b) and JH3. In -.

the same table, also presented is the discrepancy between the mean

of § for the correct answer and the lowest mean § for one of

the four wrong answers, under the heading, "largest discrepancy."

The correct answers are always identified as the ones which have

°" %1
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TABLE 10-3-1

Mean of the Maximm Likelihood Estimates of Ablity, , for Each of the
Five Subgroups of Subjects Selecting Different Alternatives, for Each of
the 19 Vocabulary Test Items, Together With the Actual Frequeney Diatri-
butiona (FRQ). The Difference betveen the Mean of the Correct Sub-
groups and the Lowest Mean 6 Is Also Presented As Largest Discrepancy

for Each Item. Test J1, Junior High School Grade 1

__Alternative_ ...... Largest

Itea Indices Total Discrepancy
1 2 3 4 5

aMen 6 0.401 -0,476 -0.482 -0.750 -0.148

F3 Q 287 50 59 59 117

38meanA!r 38
nrQ

Mean 6 -0.192 -0.091 -0.270 -0.243 0.400
-39 -Q 91 115 118 51 187 562 0.670

40 Mean a 0.071 -0.416 -0.336 0.310 -0.479
0 RQ 60 141 90 273 90.789

Mean A -0.557 -1.007 -0.445 -0.456 0.254
S41 FQ 53 20 23 85 392 1.261

42 Mean 0 0.339 -0.570 0.036 -0.439 -0.387 0.909
FRQ 247 21 121 84 97

Hean a -0.512 0.376 -0.572 -0.245 -0.393
43 FRQ 26 308 98 67 572 0.948

!44 Mean 0 -0.293 -0.547 -0.595 0.271 -0.318 59 .644 R6 119 67 14 333 36 569 0.866

Maan 0 -0.638 -0.412 -0.636 0.395 -0.593
.5 Q 51 25 123 346 23 568 1.033

46 Mean A 0.444 -0.741 -0.325 -0.428 -0.534
46 FRQ 296 46 44 164 18 568 1.185

47 Mean 8 -0.261 C.270 -0.078 -0.426 -0.101
nFQ 69 224 158 .53 656

48 Mean 0 -0.129 -0.024 -1.013 -0.467 0.412
8 Q 81 100 58 67 258 564 1.425

SMean 4 -0.339 -0.390 -0.284 -0.464 0.309
FRQ 115 31 42 70 315 7.773

Mean e 0.349 -0.256 -1.015 -0.317 -0.385
50 FRQ 308 46 35 86 96 571 1.364

51 Mean 6 -0.137 -0,640 -0.077 -0.136 0.429

nA 89 82 75 113 201 560 1.069

M2ean -0.219 0.291 -0.110 -0.608 -0.095
5•• 116 235 80 34 500

Mean 0 -0.071 -0.030 -0.453 0.527 -0.241
53 nQ 163 51 34 143 181 572 0.980

M54 Me a 0.132 -0.060 -0.084 -0.037 -0.283 561 0.415

FN 182 111 100 142 26 0

mean A 0.114 -0.278 -0.172 -0.533 0.690 5 .

'RQ 27 72 317 29 126 571 1.223

S6 Mean 6 -0.460 -0.113 -0.412 0.742 0.01556 Q 104 101 115 141 111 572 1.202

a I

_ _- ...... . . .. ... . . . .~. ., .. - . - . . . ... .. •
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the highest means of .

(X.4) Distractors As Resources of Information

Shiba's research is based upon his belief in the usefulness

of distractors as important resources of information, in addition

to the correct answer. This is the same belief which the author

has kept in mind for many years (cf. SamajL-, 1968). As far as we

score the multiple-choice test item correct or incorrect and treat

it as a binary item, it can never surpass the free-response test

item, but will always stay as a "blurred" image of the free-response

test item, owing to the noise caused by the examinee's guessing

behavior, etc. If we make the full use of the information given by

distractors, however, then the multiple-choice test item will have

the merit of its own, and can even be more informative than the

free-response test item.,

It is zesearchers' responsibility to increase the efficiency

in mental measurement. To ignore whatever legitimate information

we can obtain from our research data is against this principle. If
distractors can serve for this purpose, we should certainly not to

stay with models like the three-parameter logistic model, in which

all the wrong answers given as alternatives in the multiple-choice

test item are treated as being equivalent, without any information

of their own. It will be worth our effort to investigate Informative

Distribution Model rather than to stay with the Equivalent

Distractor Model (cf. Sections IX.9 and IX.10).

(X.5) Mathematical Models in Physics and in Psychology

The role of mathematical models in any science may be to

describe its reality following an appropriate rationale. We muat

recognize, however, some difference between the role of mathematical

models in pure natural sciences, like physics, and that in
S~Psychology. This difference comes from the fact that, while in

physics it is impossible or meaningless to change natural phenomena

4 to which objects react, in psychology many phenomena to which

____________
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F persons react are also made by persons, and it is quite legitimate to

change them for good causes.

The latter logic is directly applicable to models for the

multiple-choice test item. An important implication is that we

inay be able to do better than supplying mathematical models for

the existing test items rather passively. If we conceive of some

mathematical models which, in theory, will enhance the efficiency

F in mental measurement, we shall be able to advise test constructors

to develop the types of multiple-choice test items which follow our

models, instead of accepting whatever test items they produce. We

can also adjust the pressure and its directions which are put upon

examinees, by changing our instructions appropriately. To give an

example, we can effectively discourage our examinees to guess, or

to skip items.

(X.6) Normal Ogive Model on the Graded Response Level and Bock's
Multinomial Model

Normal ogive model, which was originally introduced as a

model for a binary, free-response test item, has been expanded to

fit a more general case, in which an item is graded into more than

two item score categories (Samejima, 1969, 1972). Bock has

proposed a multinomial model (Bock, 1972), for the multiple-choice

test item. It has been pointed out (Samejima, 1972) that, although

r Bock's model was originally developed for nominal categories, i.e.,

the categories which are not ordered among themselves, it can be

considered as a model in the heterogeneous case of the graded

response level.

Let g be a multiple-choice item, h , i or k be one of

its mg alternative, and or X be the response_, tsm ltrnties an LXhg "Xig Xkg

tendency for the alternative, h , i or k . •hen any two

alternatives, h and k , are compared alone, the probability -ith

which h is chosen in preference to k is assumed to be a function

of ability 6 , and is denoted by 7hk(O;g) . Thus we can write
[' k
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(10.9) ,hk(e;g) + h(8;g) 1 i
bk ' kh'

When the comparison is made among ut (2) alternatives, the

conditional probability with which the alternative h is chosen

in preference to all the other (m -1) alternatives, given 9 , is

denoted by Ph( , and we have

(10.10) Eg Ph(0;&) 1
h-1

We shall define a variable * such that,!ik; g

(10.11) Xhk;g Xhg Xkg

i.e., the difference between the two response tendencies, Xhg and

Xkg

Hereafter, for simplicity, we shall drop the subscript g

whenever it is clear that we are dealing with only one multiple-

choice item. Thus, in such a case, nh(6) is used for v

Xhk for Xhk;g and so forth.

In the multinomial model, it is assumed that; 1) the
conditional distribution of Xk , given e , is normal, with

Pk(e;g) , or Uk(6)., and ak(e;g) , or ak(e) , as the two
parameters; 2) X 's are conditionally, mutually independent, given

k
e ; and 3) the ratio of the probabilities with which the two

alternatives are chosen, respectively, is invariant for the set of "

alternatives among which the two alternatives are compared. Thus

for the third assumption we can write i
(10.12) Ph (e)/Pk(e) - nhk(0)/ kh(e) .

From the first two of these assumptions, it is derived that

the conditional distribution of Xhk ' given e , is also normal,

.711


